| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ressbas.r |  |-  R = ( W |`s A ) | 
						
							| 2 |  | ressbas.b |  |-  B = ( Base ` W ) | 
						
							| 3 |  | simp1 |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> B C_ A ) | 
						
							| 4 |  | sseqin2 |  |-  ( B C_ A <-> ( A i^i B ) = B ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = B ) | 
						
							| 6 | 1 2 | ressid2 |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> R = W ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( Base ` R ) = ( Base ` W ) ) | 
						
							| 8 | 2 5 7 | 3eqtr4a |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) | 
						
							| 9 | 8 | 3expib |  |-  ( B C_ A -> ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) ) | 
						
							| 10 |  | simp2 |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> W e. _V ) | 
						
							| 11 | 2 | fvexi |  |-  B e. _V | 
						
							| 12 | 11 | inex2 |  |-  ( A i^i B ) e. _V | 
						
							| 13 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 14 | 13 | setsid |  |-  ( ( W e. _V /\ ( A i^i B ) e. _V ) -> ( A i^i B ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) | 
						
							| 15 | 10 12 14 | sylancl |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) | 
						
							| 16 | 1 2 | ressval2 |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( Base ` R ) = ( Base ` ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) | 
						
							| 18 | 15 17 | eqtr4d |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) | 
						
							| 19 | 18 | 3expib |  |-  ( -. B C_ A -> ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) ) | 
						
							| 20 | 9 19 | pm2.61i |  |-  ( ( W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) | 
						
							| 21 |  | 0fv |  |-  ( (/) ` ( Base ` ndx ) ) = (/) | 
						
							| 22 |  | 0ex |  |-  (/) e. _V | 
						
							| 23 | 22 13 | strfvn |  |-  ( Base ` (/) ) = ( (/) ` ( Base ` ndx ) ) | 
						
							| 24 |  | in0 |  |-  ( A i^i (/) ) = (/) | 
						
							| 25 | 21 23 24 | 3eqtr4ri |  |-  ( A i^i (/) ) = ( Base ` (/) ) | 
						
							| 26 |  | fvprc |  |-  ( -. W e. _V -> ( Base ` W ) = (/) ) | 
						
							| 27 | 2 26 | eqtrid |  |-  ( -. W e. _V -> B = (/) ) | 
						
							| 28 | 27 | ineq2d |  |-  ( -. W e. _V -> ( A i^i B ) = ( A i^i (/) ) ) | 
						
							| 29 |  | reldmress |  |-  Rel dom |`s | 
						
							| 30 | 29 | ovprc1 |  |-  ( -. W e. _V -> ( W |`s A ) = (/) ) | 
						
							| 31 | 1 30 | eqtrid |  |-  ( -. W e. _V -> R = (/) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( -. W e. _V -> ( Base ` R ) = ( Base ` (/) ) ) | 
						
							| 33 | 25 28 32 | 3eqtr4a |  |-  ( -. W e. _V -> ( A i^i B ) = ( Base ` R ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( -. W e. _V /\ A e. V ) -> ( A i^i B ) = ( Base ` R ) ) | 
						
							| 35 | 20 34 | pm2.61ian |  |-  ( A e. V -> ( A i^i B ) = ( Base ` R ) ) |