Metamath Proof Explorer


Theorem ressplusg

Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypotheses ressplusg.1 H=G𝑠A
ressplusg.2 +˙=+G
Assertion ressplusg AV+˙=+H

Proof

Step Hyp Ref Expression
1 ressplusg.1 H=G𝑠A
2 ressplusg.2 +˙=+G
3 plusgid +𝑔=Slot+ndx
4 basendxnplusgndx Basendx+ndx
5 4 necomi +ndxBasendx
6 1 2 3 5 resseqnbas AV+˙=+H