| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expghm.m | ⊢ 𝑀  =  ( mulGrp ‘ ℂfld ) | 
						
							| 2 |  | expghm.u | ⊢ 𝑈  =  ( 𝑀  ↾s  ( ℂ  ∖  { 0 } ) ) | 
						
							| 3 |  | expclzlem | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑥  ∈  ℤ )  →  ( 𝐴 ↑ 𝑥 )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 4 | 3 | 3expa | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝑥  ∈  ℤ )  →  ( 𝐴 ↑ 𝑥 )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 5 | 4 | fmpttd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ  ∖  { 0 } ) ) | 
						
							| 6 |  | expaddz | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝐴 ↑ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐴 ↑ 𝑦 )  ·  ( 𝐴 ↑ 𝑧 ) ) ) | 
						
							| 7 |  | zaddcl | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 𝑦  +  𝑧 )  ∈  ℤ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( 𝑦  +  𝑧 )  ∈  ℤ ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  𝑧 )  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) | 
						
							| 11 |  | ovex | ⊢ ( 𝐴 ↑ ( 𝑦  +  𝑧 ) )  ∈  V | 
						
							| 12 | 9 10 11 | fvmpt | ⊢ ( ( 𝑦  +  𝑧 )  ∈  ℤ  →  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦  +  𝑧 ) )  =  ( 𝐴 ↑ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 13 | 8 12 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦  +  𝑧 ) )  =  ( 𝐴 ↑ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 𝑦 ) ) | 
						
							| 15 |  | ovex | ⊢ ( 𝐴 ↑ 𝑦 )  ∈  V | 
						
							| 16 | 14 10 15 | fvmpt | ⊢ ( 𝑦  ∈  ℤ  →  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 )  =  ( 𝐴 ↑ 𝑦 ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 𝑧 ) ) | 
						
							| 18 |  | ovex | ⊢ ( 𝐴 ↑ 𝑧 )  ∈  V | 
						
							| 19 | 17 10 18 | fvmpt | ⊢ ( 𝑧  ∈  ℤ  →  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 )  =  ( 𝐴 ↑ 𝑧 ) ) | 
						
							| 20 | 16 19 | oveqan12d | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 )  ·  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) )  =  ( ( 𝐴 ↑ 𝑦 )  ·  ( 𝐴 ↑ 𝑧 ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 )  ·  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) )  =  ( ( 𝐴 ↑ 𝑦 )  ·  ( 𝐴 ↑ 𝑧 ) ) ) | 
						
							| 22 | 6 13 21 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑦  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦  +  𝑧 ) )  =  ( ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 )  ·  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) | 
						
							| 23 | 22 | ralrimivva | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ∀ 𝑦  ∈  ℤ ∀ 𝑧  ∈  ℤ ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦  +  𝑧 ) )  =  ( ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 )  ·  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) | 
						
							| 24 |  | zringgrp | ⊢ ℤring  ∈  Grp | 
						
							| 25 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 26 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 27 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 28 |  | cndrng | ⊢ ℂfld  ∈  DivRing | 
						
							| 29 | 26 27 28 | drngui | ⊢ ( ℂ  ∖  { 0 } )  =  ( Unit ‘ ℂfld ) | 
						
							| 30 | 1 | oveq1i | ⊢ ( 𝑀  ↾s  ( ℂ  ∖  { 0 } ) )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) | 
						
							| 31 | 2 30 | eqtri | ⊢ 𝑈  =  ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) | 
						
							| 32 | 29 31 | unitgrp | ⊢ ( ℂfld  ∈  Ring  →  𝑈  ∈  Grp ) | 
						
							| 33 | 25 32 | ax-mp | ⊢ 𝑈  ∈  Grp | 
						
							| 34 | 24 33 | pm3.2i | ⊢ ( ℤring  ∈  Grp  ∧  𝑈  ∈  Grp ) | 
						
							| 35 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 36 |  | difss | ⊢ ( ℂ  ∖  { 0 } )  ⊆  ℂ | 
						
							| 37 | 1 26 | mgpbas | ⊢ ℂ  =  ( Base ‘ 𝑀 ) | 
						
							| 38 | 2 37 | ressbas2 | ⊢ ( ( ℂ  ∖  { 0 } )  ⊆  ℂ  →  ( ℂ  ∖  { 0 } )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 39 | 36 38 | ax-mp | ⊢ ( ℂ  ∖  { 0 } )  =  ( Base ‘ 𝑈 ) | 
						
							| 40 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 41 | 29 | fvexi | ⊢ ( ℂ  ∖  { 0 } )  ∈  V | 
						
							| 42 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 43 | 1 42 | mgpplusg | ⊢  ·   =  ( +g ‘ 𝑀 ) | 
						
							| 44 | 2 43 | ressplusg | ⊢ ( ( ℂ  ∖  { 0 } )  ∈  V  →   ·   =  ( +g ‘ 𝑈 ) ) | 
						
							| 45 | 41 44 | ax-mp | ⊢  ·   =  ( +g ‘ 𝑈 ) | 
						
							| 46 | 35 39 40 45 | isghm | ⊢ ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) )  ∈  ( ℤring  GrpHom  𝑈 )  ↔  ( ( ℤring  ∈  Grp  ∧  𝑈  ∈  Grp )  ∧  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ  ∖  { 0 } )  ∧  ∀ 𝑦  ∈  ℤ ∀ 𝑧  ∈  ℤ ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦  +  𝑧 ) )  =  ( ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 )  ·  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) ) ) | 
						
							| 47 | 34 46 | mpbiran | ⊢ ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) )  ∈  ( ℤring  GrpHom  𝑈 )  ↔  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) : ℤ ⟶ ( ℂ  ∖  { 0 } )  ∧  ∀ 𝑦  ∈  ℤ ∀ 𝑧  ∈  ℤ ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ ( 𝑦  +  𝑧 ) )  =  ( ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑦 )  ·  ( ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) ) ‘ 𝑧 ) ) ) ) | 
						
							| 48 | 5 23 47 | sylanbrc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 𝑥  ∈  ℤ  ↦  ( 𝐴 ↑ 𝑥 ) )  ∈  ( ℤring  GrpHom  𝑈 ) ) |