| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elz2 | ⊢ ( 𝑀  ∈  ℤ  ↔  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑀  =  ( 𝑥  −  𝑦 ) ) | 
						
							| 2 |  | elz2 | ⊢ ( 𝑁  ∈  ℤ  ↔  ∃ 𝑧  ∈  ℕ ∃ 𝑤  ∈  ℕ 𝑁  =  ( 𝑧  −  𝑤 ) ) | 
						
							| 3 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  ℕ ∃ 𝑧  ∈  ℕ ( ∃ 𝑦  ∈  ℕ 𝑀  =  ( 𝑥  −  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝑁  =  ( 𝑧  −  𝑤 ) )  ↔  ( ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑀  =  ( 𝑥  −  𝑦 )  ∧  ∃ 𝑧  ∈  ℕ ∃ 𝑤  ∈  ℕ 𝑁  =  ( 𝑧  −  𝑤 ) ) ) | 
						
							| 4 |  | reeanv | ⊢ ( ∃ 𝑦  ∈  ℕ ∃ 𝑤  ∈  ℕ ( 𝑀  =  ( 𝑥  −  𝑦 )  ∧  𝑁  =  ( 𝑧  −  𝑤 ) )  ↔  ( ∃ 𝑦  ∈  ℕ 𝑀  =  ( 𝑥  −  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝑁  =  ( 𝑧  −  𝑤 ) ) ) | 
						
							| 5 |  | nnaddcl | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  →  ( 𝑥  +  𝑧 )  ∈  ℕ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ( 𝑥  +  𝑧 )  ∈  ℕ ) | 
						
							| 7 |  | nnaddcl | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  →  ( 𝑦  +  𝑤 )  ∈  ℕ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ( 𝑦  +  𝑤 )  ∈  ℕ ) | 
						
							| 9 |  | nncn | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℂ ) | 
						
							| 10 |  | nncn | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℂ ) | 
						
							| 11 | 9 10 | anim12i | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  →  ( 𝑥  ∈  ℂ  ∧  𝑧  ∈  ℂ ) ) | 
						
							| 12 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 13 |  | nncn | ⊢ ( 𝑤  ∈  ℕ  →  𝑤  ∈  ℂ ) | 
						
							| 14 | 12 13 | anim12i | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  →  ( 𝑦  ∈  ℂ  ∧  𝑤  ∈  ℂ ) ) | 
						
							| 15 |  | addsub4 | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑧  ∈  ℂ )  ∧  ( 𝑦  ∈  ℂ  ∧  𝑤  ∈  ℂ ) )  →  ( ( 𝑥  +  𝑧 )  −  ( 𝑦  +  𝑤 ) )  =  ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) ) ) | 
						
							| 16 | 11 14 15 | syl2an | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ( ( 𝑥  +  𝑧 )  −  ( 𝑦  +  𝑤 ) )  =  ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) ) ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  =  ( ( 𝑥  +  𝑧 )  −  ( 𝑦  +  𝑤 ) ) ) | 
						
							| 18 |  | rspceov | ⊢ ( ( ( 𝑥  +  𝑧 )  ∈  ℕ  ∧  ( 𝑦  +  𝑤 )  ∈  ℕ  ∧  ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  =  ( ( 𝑥  +  𝑧 )  −  ( 𝑦  +  𝑤 ) ) )  →  ∃ 𝑢  ∈  ℕ ∃ 𝑣  ∈  ℕ ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  =  ( 𝑢  −  𝑣 ) ) | 
						
							| 19 | 6 8 17 18 | syl3anc | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ∃ 𝑢  ∈  ℕ ∃ 𝑣  ∈  ℕ ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  =  ( 𝑢  −  𝑣 ) ) | 
						
							| 20 |  | elz2 | ⊢ ( ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  ∈  ℤ  ↔  ∃ 𝑢  ∈  ℕ ∃ 𝑣  ∈  ℕ ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  =  ( 𝑢  −  𝑣 ) ) | 
						
							| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  ∈  ℤ ) | 
						
							| 22 |  | oveq12 | ⊢ ( ( 𝑀  =  ( 𝑥  −  𝑦 )  ∧  𝑁  =  ( 𝑧  −  𝑤 ) )  →  ( 𝑀  +  𝑁 )  =  ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( ( 𝑀  =  ( 𝑥  −  𝑦 )  ∧  𝑁  =  ( 𝑧  −  𝑤 ) )  →  ( ( 𝑀  +  𝑁 )  ∈  ℤ  ↔  ( ( 𝑥  −  𝑦 )  +  ( 𝑧  −  𝑤 ) )  ∈  ℤ ) ) | 
						
							| 24 | 21 23 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ( ( 𝑀  =  ( 𝑥  −  𝑦 )  ∧  𝑁  =  ( 𝑧  −  𝑤 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) ) | 
						
							| 25 | 24 | rexlimdvva | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  →  ( ∃ 𝑦  ∈  ℕ ∃ 𝑤  ∈  ℕ ( 𝑀  =  ( 𝑥  −  𝑦 )  ∧  𝑁  =  ( 𝑧  −  𝑤 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) ) | 
						
							| 26 | 4 25 | biimtrrid | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑧  ∈  ℕ )  →  ( ( ∃ 𝑦  ∈  ℕ 𝑀  =  ( 𝑥  −  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝑁  =  ( 𝑧  −  𝑤 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) ) | 
						
							| 27 | 26 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  ℕ ∃ 𝑧  ∈  ℕ ( ∃ 𝑦  ∈  ℕ 𝑀  =  ( 𝑥  −  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝑁  =  ( 𝑧  −  𝑤 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) | 
						
							| 28 | 3 27 | sylbir | ⊢ ( ( ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑀  =  ( 𝑥  −  𝑦 )  ∧  ∃ 𝑧  ∈  ℕ ∃ 𝑤  ∈  ℕ 𝑁  =  ( 𝑧  −  𝑤 ) )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) | 
						
							| 29 | 1 2 28 | syl2anb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  +  𝑁 )  ∈  ℤ ) |