Step |
Hyp |
Ref |
Expression |
1 |
|
elz2 |
⊢ ( 𝑀 ∈ ℤ ↔ ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ) |
2 |
|
elz2 |
⊢ ( 𝑁 ∈ ℤ ↔ ∃ 𝑧 ∈ ℕ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) |
3 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑧 ∈ ℕ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) ) |
4 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) ) |
5 |
|
nnaddcl |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑥 + 𝑧 ) ∈ ℕ ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑥 + 𝑧 ) ∈ ℕ ) |
7 |
|
nnaddcl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 𝑦 + 𝑤 ) ∈ ℕ ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑦 + 𝑤 ) ∈ ℕ ) |
9 |
|
nncn |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) |
10 |
|
nncn |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) |
11 |
9 10
|
anim12i |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
12 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
13 |
|
nncn |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) |
14 |
12 13
|
anim12i |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) |
15 |
|
addsub4 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) = ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ) |
16 |
11 14 15
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) = ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) ) |
18 |
|
rspceov |
⊢ ( ( ( 𝑥 + 𝑧 ) ∈ ℕ ∧ ( 𝑦 + 𝑤 ) ∈ ℕ ∧ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( ( 𝑥 + 𝑧 ) − ( 𝑦 + 𝑤 ) ) ) → ∃ 𝑢 ∈ ℕ ∃ 𝑣 ∈ ℕ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( 𝑢 − 𝑣 ) ) |
19 |
6 8 17 18
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ∃ 𝑢 ∈ ℕ ∃ 𝑣 ∈ ℕ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( 𝑢 − 𝑣 ) ) |
20 |
|
elz2 |
⊢ ( ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ∈ ℤ ↔ ∃ 𝑢 ∈ ℕ ∃ 𝑣 ∈ ℕ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) = ( 𝑢 − 𝑣 ) ) |
21 |
19 20
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ∈ ℤ ) |
22 |
|
oveq12 |
⊢ ( ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) = ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ) |
23 |
22
|
eleq1d |
⊢ ( ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( ( 𝑀 + 𝑁 ) ∈ ℤ ↔ ( ( 𝑥 − 𝑦 ) + ( 𝑧 − 𝑤 ) ) ∈ ℤ ) ) |
24 |
21 23
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
25 |
24
|
rexlimdvva |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝑀 = ( 𝑥 − 𝑦 ) ∧ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
26 |
4 25
|
syl5bir |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) ) |
27 |
26
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑧 ∈ ℕ ( ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
28 |
3 27
|
sylbir |
⊢ ( ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑀 = ( 𝑥 − 𝑦 ) ∧ ∃ 𝑧 ∈ ℕ ∃ 𝑤 ∈ ℕ 𝑁 = ( 𝑧 − 𝑤 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
29 |
1 2 28
|
syl2anb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |