Metamath Proof Explorer


Theorem addsub4

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005)

Ref Expression
Assertion addsub4 ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴𝐶 ) + ( 𝐵𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 simpll ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐴 ∈ ℂ )
2 simplr ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ )
3 simprl ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ )
4 addsub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴𝐶 ) + 𝐵 ) )
5 1 2 3 4 syl3anc ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) − 𝐶 ) = ( ( 𝐴𝐶 ) + 𝐵 ) )
6 5 oveq1d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( ( 𝐴𝐶 ) + 𝐵 ) − 𝐷 ) )
7 1 2 addcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ )
8 simprr ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐷 ∈ ℂ )
9 subsub4 ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) )
10 7 3 8 9 syl3anc ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) − 𝐷 ) = ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) )
11 subcl ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴𝐶 ) ∈ ℂ )
12 11 ad2ant2r ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴𝐶 ) ∈ ℂ )
13 addsubass ( ( ( 𝐴𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 𝐴𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( 𝐴𝐶 ) + ( 𝐵𝐷 ) ) )
14 12 2 8 13 syl3anc ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( 𝐴𝐶 ) + ( 𝐵𝐷 ) ) )
15 6 10 14 3eqtr3d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) − ( 𝐶 + 𝐷 ) ) = ( ( 𝐴𝐶 ) + ( 𝐵𝐷 ) ) )