Metamath Proof Explorer


Theorem addsub4

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005)

Ref Expression
Assertion addsub4 ABCDA+B-C+D=AC+B-D

Proof

Step Hyp Ref Expression
1 simpll ABCDA
2 simplr ABCDB
3 simprl ABCDC
4 addsub ABCA+B-C=A-C+B
5 1 2 3 4 syl3anc ABCDA+B-C=A-C+B
6 5 oveq1d ABCDA+B-C-D=AC+B-D
7 1 2 addcld ABCDA+B
8 simprr ABCDD
9 subsub4 A+BCDA+B-C-D=A+B-C+D
10 7 3 8 9 syl3anc ABCDA+B-C-D=A+B-C+D
11 subcl ACAC
12 11 ad2ant2r ABCDAC
13 addsubass ACBDAC+B-D=AC+B-D
14 12 2 8 13 syl3anc ABCDAC+B-D=AC+B-D
15 6 10 14 3eqtr3d ABCDA+B-C+D=AC+B-D