Metamath Proof Explorer


Theorem addsub

Description: Law for addition and subtraction. (Contributed by NM, 19-Aug-2001) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion addsub A B C A + B - C = A - C + B

Proof

Step Hyp Ref Expression
1 addcom A B A + B = B + A
2 1 oveq1d A B A + B - C = B + A - C
3 2 3adant3 A B C A + B - C = B + A - C
4 addsubass B A C B + A - C = B + A - C
5 4 3com12 A B C B + A - C = B + A - C
6 subcl A C A C
7 addcom B A C B + A - C = A - C + B
8 6 7 sylan2 B A C B + A - C = A - C + B
9 8 3impb B A C B + A - C = A - C + B
10 9 3com12 A B C B + A - C = A - C + B
11 3 5 10 3eqtrd A B C A + B - C = A - C + B