| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mgpval.1 | 
							⊢ 𝑀  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							mgpval.2 | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								2
							 | 
							fvexi | 
							⊢  ·   ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							plusgid | 
							⊢ +g  =  Slot  ( +g ‘ ndx )  | 
						
						
							| 5 | 
							
								4
							 | 
							setsid | 
							⊢ ( ( 𝑅  ∈  V  ∧   ·   ∈  V )  →   ·   =  ( +g ‘ ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 ) ) )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							mpan2 | 
							⊢ ( 𝑅  ∈  V  →   ·   =  ( +g ‘ ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 ) ) )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							mgpval | 
							⊢ 𝑀  =  ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 )  | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2i | 
							⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							eqtr4di | 
							⊢ ( 𝑅  ∈  V  →   ·   =  ( +g ‘ 𝑀 ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							str0 | 
							⊢ ∅  =  ( +g ‘ ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑅  ∈  V  →  ( .r ‘ 𝑅 )  =  ∅ )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							eqtrid | 
							⊢ ( ¬  𝑅  ∈  V  →   ·   =  ∅ )  | 
						
						
							| 13 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑅  ∈  V  →  ( mulGrp ‘ 𝑅 )  =  ∅ )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							eqtrid | 
							⊢ ( ¬  𝑅  ∈  V  →  𝑀  =  ∅ )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq2d | 
							⊢ ( ¬  𝑅  ∈  V  →  ( +g ‘ 𝑀 )  =  ( +g ‘ ∅ ) )  | 
						
						
							| 16 | 
							
								10 12 15
							 | 
							3eqtr4a | 
							⊢ ( ¬  𝑅  ∈  V  →   ·   =  ( +g ‘ 𝑀 ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							pm2.61i | 
							⊢  ·   =  ( +g ‘ 𝑀 )  |