Step |
Hyp |
Ref |
Expression |
1 |
|
mgpval.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
mgpval.2 |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
6 |
5
|
opeq2d |
⊢ ( 𝑟 = 𝑅 → 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑟 ) 〉 = 〈 ( +g ‘ ndx ) , · 〉 ) |
7 |
3 6
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑟 ) 〉 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
8 |
|
df-mgp |
⊢ mulGrp = ( 𝑟 ∈ V ↦ ( 𝑟 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑟 ) 〉 ) ) |
9 |
|
ovex |
⊢ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
11 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ ) |
12 |
|
reldmsets |
⊢ Rel dom sSet |
13 |
12
|
ovprc1 |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) = ∅ ) |
14 |
11 13
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
15 |
10 14
|
pm2.61i |
⊢ ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) |
16 |
1 15
|
eqtri |
⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) |