| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mgpval.1 | 
							⊢ 𝑀  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							mgpval.2 | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							⊢ ( 𝑟  =  𝑅  →  𝑟  =  𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =  ( .r ‘ 𝑅 ) )  | 
						
						
							| 5 | 
							
								4 2
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( .r ‘ 𝑟 )  =   ·  )  | 
						
						
							| 6 | 
							
								5
							 | 
							opeq2d | 
							⊢ ( 𝑟  =  𝑅  →  〈 ( +g ‘ ndx ) ,  ( .r ‘ 𝑟 ) 〉  =  〈 ( +g ‘ ndx ) ,   ·  〉 )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							oveq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( 𝑟  sSet  〈 ( +g ‘ ndx ) ,  ( .r ‘ 𝑟 ) 〉 )  =  ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							df-mgp | 
							⊢ mulGrp  =  ( 𝑟  ∈  V  ↦  ( 𝑟  sSet  〈 ( +g ‘ ndx ) ,  ( .r ‘ 𝑟 ) 〉 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 )  ∈  V  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							fvmpt | 
							⊢ ( 𝑅  ∈  V  →  ( mulGrp ‘ 𝑅 )  =  ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fvprc | 
							⊢ ( ¬  𝑅  ∈  V  →  ( mulGrp ‘ 𝑅 )  =  ∅ )  | 
						
						
							| 12 | 
							
								
							 | 
							reldmsets | 
							⊢ Rel  dom   sSet   | 
						
						
							| 13 | 
							
								12
							 | 
							ovprc1 | 
							⊢ ( ¬  𝑅  ∈  V  →  ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 )  =  ∅ )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							eqtr4d | 
							⊢ ( ¬  𝑅  ∈  V  →  ( mulGrp ‘ 𝑅 )  =  ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							pm2.61i | 
							⊢ ( mulGrp ‘ 𝑅 )  =  ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							eqtri | 
							⊢ 𝑀  =  ( 𝑅  sSet  〈 ( +g ‘ ndx ) ,   ·  〉 )  |