Metamath Proof Explorer


Theorem mgpval

Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014)

Ref Expression
Hypotheses mgpval.1 𝑀 = ( mulGrp ‘ 𝑅 )
mgpval.2 · = ( .r𝑅 )
Assertion mgpval 𝑀 = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ )

Proof

Step Hyp Ref Expression
1 mgpval.1 𝑀 = ( mulGrp ‘ 𝑅 )
2 mgpval.2 · = ( .r𝑅 )
3 id ( 𝑟 = 𝑅𝑟 = 𝑅 )
4 fveq2 ( 𝑟 = 𝑅 → ( .r𝑟 ) = ( .r𝑅 ) )
5 4 2 eqtr4di ( 𝑟 = 𝑅 → ( .r𝑟 ) = · )
6 5 opeq2d ( 𝑟 = 𝑅 → ⟨ ( +g ‘ ndx ) , ( .r𝑟 ) ⟩ = ⟨ ( +g ‘ ndx ) , · ⟩ )
7 3 6 oveq12d ( 𝑟 = 𝑅 → ( 𝑟 sSet ⟨ ( +g ‘ ndx ) , ( .r𝑟 ) ⟩ ) = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ ) )
8 df-mgp mulGrp = ( 𝑟 ∈ V ↦ ( 𝑟 sSet ⟨ ( +g ‘ ndx ) , ( .r𝑟 ) ⟩ ) )
9 ovex ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ ) ∈ V
10 7 8 9 fvmpt ( 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ ) )
11 fvprc ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ )
12 reldmsets Rel dom sSet
13 12 ovprc1 ( ¬ 𝑅 ∈ V → ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ ) = ∅ )
14 11 13 eqtr4d ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ ) )
15 10 14 pm2.61i ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ )
16 1 15 eqtri 𝑀 = ( 𝑅 sSet ⟨ ( +g ‘ ndx ) , · ⟩ )