Metamath Proof Explorer


Theorem mgpval

Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014)

Ref Expression
Hypotheses mgpval.1 M=mulGrpR
mgpval.2 ·˙=R
Assertion mgpval M=RsSet+ndx·˙

Proof

Step Hyp Ref Expression
1 mgpval.1 M=mulGrpR
2 mgpval.2 ·˙=R
3 id r=Rr=R
4 fveq2 r=Rr=R
5 4 2 eqtr4di r=Rr=·˙
6 5 opeq2d r=R+ndxr=+ndx·˙
7 3 6 oveq12d r=RrsSet+ndxr=RsSet+ndx·˙
8 df-mgp mulGrp=rVrsSet+ndxr
9 ovex RsSet+ndx·˙V
10 7 8 9 fvmpt RVmulGrpR=RsSet+ndx·˙
11 fvprc ¬RVmulGrpR=
12 reldmsets ReldomsSet
13 12 ovprc1 ¬RVRsSet+ndx·˙=
14 11 13 eqtr4d ¬RVmulGrpR=RsSet+ndx·˙
15 10 14 pm2.61i mulGrpR=RsSet+ndx·˙
16 1 15 eqtri M=RsSet+ndx·˙