Metamath Proof Explorer


Table of Contents - 11.6. Polynomial matrices

A polynomial matrix or matrix of polynomials is a matrix whose elements are univariate (or multivariate) polynomials. See Wikipedia "Polynomial matrix" https://en.wikipedia.org/wiki/Polynomial_matrix (18-Nov-2019). In this section, only square matrices whose elements are univariate polynomials are considered. Usually, the ring of such matrices, the ring of n x n matrices over the polynomial ring over a ring , is denoted by M(n, R[t]). The elements of this ring are called "polynomial matrices (over the ring )" in the following. In Metamath notation, this ring is defined by , usually represented by the class variable (or , if is already occupied): with .

  1. Basic properties
    1. pmatring
    2. pmatlmod
    3. pmatassa
    4. pmat0op
    5. pmat1op
    6. pmat1ovd
    7. pmat0opsc
    8. pmat1opsc
    9. pmat1ovscd
    10. pmatcoe1fsupp
    11. 1pmatscmul
  2. Constant polynomial matrices
    1. ccpmat
    2. cmat2pmat
    3. ccpmat2mat
    4. df-cpmat
    5. df-mat2pmat
    6. df-cpmat2mat
    7. cpmat
    8. cpmatpmat
    9. cpmatel
    10. cpmatelimp
    11. cpmatel2
    12. cpmatelimp2
    13. 1elcpmat
    14. cpmatacl
    15. cpmatinvcl
    16. cpmatmcllem
    17. cpmatmcl
    18. cpmatsubgpmat
    19. cpmatsrgpmat
    20. 0elcpmat
    21. mat2pmatfval
    22. mat2pmatval
    23. mat2pmatvalel
    24. mat2pmatbas
    25. mat2pmatbas0
    26. mat2pmatf
    27. mat2pmatf1
    28. mat2pmatghm
    29. mat2pmatmul
    30. mat2pmat1
    31. mat2pmatmhm
    32. mat2pmatrhm
    33. mat2pmatlin
    34. 0mat2pmat
    35. idmatidpmat
    36. d0mat2pmat
    37. d1mat2pmat
    38. mat2pmatscmxcl
    39. m2cpm
    40. m2cpmf
    41. m2cpmf1
    42. m2cpmghm
    43. m2cpmmhm
    44. m2cpmrhm
    45. m2pmfzmap
    46. m2pmfzgsumcl
    47. cpm2mfval
    48. cpm2mval
    49. cpm2mvalel
    50. cpm2mf
    51. m2cpminvid
    52. m2cpminvid2lem
    53. m2cpminvid2
    54. m2cpmfo
    55. m2cpmf1o
    56. m2cpmrngiso
    57. matcpmric
    58. m2cpminv
    59. m2cpminv0
  3. Collecting coefficients of polynomial matrices
    1. cdecpmat
    2. df-decpmat
    3. decpmatval0
    4. decpmatval
    5. decpmate
    6. decpmatcl
    7. decpmataa0
    8. decpmatfsupp
    9. decpmatid
    10. decpmatmullem
    11. decpmatmul
    12. decpmatmulsumfsupp
    13. pmatcollpw1lem1
    14. pmatcollpw1lem2
    15. pmatcollpw1
    16. pmatcollpw2lem
    17. pmatcollpw2
    18. monmatcollpw
    19. pmatcollpwlem
    20. pmatcollpw
    21. pmatcollpwfi
    22. pmatcollpw3lem
    23. pmatcollpw3
    24. pmatcollpw3fi
    25. pmatcollpw3fi1lem1
    26. pmatcollpw3fi1lem2
    27. pmatcollpw3fi1
    28. pmatcollpwscmatlem1
    29. pmatcollpwscmatlem2
    30. pmatcollpwscmat
  4. Ring isomorphism between polynomial matrices and polynomials over matrices
    1. cpm2mp
    2. df-pm2mp
    3. pm2mpf1lem
    4. pm2mpval
    5. pm2mpfval
    6. pm2mpcl
    7. pm2mpf
    8. pm2mpf1
    9. pm2mpcoe1
    10. idpm2idmp
    11. mptcoe1matfsupp
    12. mply1topmatcllem
    13. mply1topmatval
    14. mply1topmatcl
    15. mp2pm2mplem1
    16. mp2pm2mplem2
    17. mp2pm2mplem3
    18. mp2pm2mplem4
    19. mp2pm2mplem5
    20. mp2pm2mp
    21. pm2mpghmlem2
    22. pm2mpghmlem1
    23. pm2mpfo
    24. pm2mpf1o
    25. pm2mpghm
    26. pm2mpgrpiso
    27. pm2mpmhmlem1
    28. pm2mpmhmlem2
    29. pm2mpmhm
    30. pm2mprhm
    31. pm2mprngiso
    32. pmmpric
    33. monmat2matmon
    34. pm2mp