Metamath Proof Explorer


Table of Contents - 10.2.2. Group multiple operation

The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element (of a monoid) to the power of a nonnegative integer is defined and denoted by . Definition df-mulg, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg of the inverse operation .

  1. cmg
  2. df-mulg
  3. mulgfval
  4. mulgfvalALT
  5. mulgval
  6. mulgfn
  7. mulgfvi
  8. mulg0
  9. mulgnn
  10. mulgnngsum
  11. mulgnn0gsum
  12. mulg1
  13. mulgnnp1
  14. mulg2
  15. mulgnegnn
  16. mulgnn0p1
  17. mulgnnsubcl
  18. mulgnn0subcl
  19. mulgsubcl
  20. mulgnncl
  21. mulgnn0cl
  22. mulgcl
  23. mulgneg
  24. mulgnegneg
  25. mulgm1
  26. mulgcld
  27. mulgaddcomlem
  28. mulgaddcom
  29. mulginvcom
  30. mulginvinv
  31. mulgnn0z
  32. mulgz
  33. mulgnndir
  34. mulgnn0dir
  35. mulgdirlem
  36. mulgdir
  37. mulgp1
  38. mulgneg2
  39. mulgnnass
  40. mulgnn0ass
  41. mulgass
  42. mulgassr
  43. mulgmodid
  44. mulgsubdir
  45. mhmmulg
  46. mulgpropd
  47. submmulgcl
  48. submmulg
  49. pwsmulg