Metamath Proof Explorer


Theorem mulgnnsubcl

Description: Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mulgnnsubcl.b B=BaseG
mulgnnsubcl.t ·˙=G
mulgnnsubcl.p +˙=+G
mulgnnsubcl.g φGV
mulgnnsubcl.s φSB
mulgnnsubcl.c φxSySx+˙yS
Assertion mulgnnsubcl φNXSN·˙XS

Proof

Step Hyp Ref Expression
1 mulgnnsubcl.b B=BaseG
2 mulgnnsubcl.t ·˙=G
3 mulgnnsubcl.p +˙=+G
4 mulgnnsubcl.g φGV
5 mulgnnsubcl.s φSB
6 mulgnnsubcl.c φxSySx+˙yS
7 simp2 φNXSN
8 5 3ad2ant1 φNXSSB
9 simp3 φNXSXS
10 8 9 sseldd φNXSXB
11 eqid seq1+˙×X=seq1+˙×X
12 1 3 2 11 mulgnn NXBN·˙X=seq1+˙×XN
13 7 10 12 syl2anc φNXSN·˙X=seq1+˙×XN
14 nnuz =1
15 7 14 eleqtrdi φNXSN1
16 elfznn x1Nx
17 fvconst2g XSx×Xx=X
18 9 16 17 syl2an φNXSx1N×Xx=X
19 simpl3 φNXSx1NXS
20 18 19 eqeltrd φNXSx1N×XxS
21 6 3expb φxSySx+˙yS
22 21 3ad2antl1 φNXSxSySx+˙yS
23 15 20 22 seqcl φNXSseq1+˙×XNS
24 13 23 eqeltrd φNXSN·˙XS