Metamath Proof Explorer


Theorem mulgnn

Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnn.b B=BaseG
mulgnn.p +˙=+G
mulgnn.t ·˙=G
mulgnn.s S=seq1+˙×X
Assertion mulgnn NXBN·˙X=SN

Proof

Step Hyp Ref Expression
1 mulgnn.b B=BaseG
2 mulgnn.p +˙=+G
3 mulgnn.t ·˙=G
4 mulgnn.s S=seq1+˙×X
5 nnz NN
6 eqid 0G=0G
7 eqid invgG=invgG
8 1 2 6 7 3 4 mulgval NXBN·˙X=ifN=00Gif0<NSNinvgGSN
9 5 8 sylan NXBN·˙X=ifN=00Gif0<NSNinvgGSN
10 nnne0 NN0
11 10 neneqd N¬N=0
12 11 iffalsed NifN=00Gif0<NSNinvgGSN=if0<NSNinvgGSN
13 nngt0 N0<N
14 13 iftrued Nif0<NSNinvgGSN=SN
15 12 14 eqtrd NifN=00Gif0<NSNinvgGSN=SN
16 15 adantr NXBifN=00Gif0<NSNinvgGSN=SN
17 9 16 eqtrd NXBN·˙X=SN