Description: Define inverse of group element. (Contributed by NM, 24-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-minusg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cminusg | |
|
1 | vg | |
|
2 | cvv | |
|
3 | vx | |
|
4 | cbs | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | vw | |
|
8 | 7 | cv | |
9 | cplusg | |
|
10 | 5 9 | cfv | |
11 | 3 | cv | |
12 | 8 11 10 | co | |
13 | c0g | |
|
14 | 5 13 | cfv | |
15 | 12 14 | wceq | |
16 | 15 7 6 | crio | |
17 | 3 6 16 | cmpt | |
18 | 1 2 17 | cmpt | |
19 | 0 18 | wceq | |