| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cminusg | 
							 |-  invg  | 
						
						
							| 1 | 
							
								
							 | 
							vg | 
							 |-  g  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							 |-  _V  | 
						
						
							| 3 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 4 | 
							
								
							 | 
							cbs | 
							 |-  Base  | 
						
						
							| 5 | 
							
								1
							 | 
							cv | 
							 |-  g  | 
						
						
							| 6 | 
							
								5 4
							 | 
							cfv | 
							 |-  ( Base ` g )  | 
						
						
							| 7 | 
							
								
							 | 
							vw | 
							 |-  w  | 
						
						
							| 8 | 
							
								7
							 | 
							cv | 
							 |-  w  | 
						
						
							| 9 | 
							
								
							 | 
							cplusg | 
							 |-  +g  | 
						
						
							| 10 | 
							
								5 9
							 | 
							cfv | 
							 |-  ( +g ` g )  | 
						
						
							| 11 | 
							
								3
							 | 
							cv | 
							 |-  x  | 
						
						
							| 12 | 
							
								8 11 10
							 | 
							co | 
							 |-  ( w ( +g ` g ) x )  | 
						
						
							| 13 | 
							
								
							 | 
							c0g | 
							 |-  0g  | 
						
						
							| 14 | 
							
								5 13
							 | 
							cfv | 
							 |-  ( 0g ` g )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							wceq | 
							 |-  ( w ( +g ` g ) x ) = ( 0g ` g )  | 
						
						
							| 16 | 
							
								15 7 6
							 | 
							crio | 
							 |-  ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) )  | 
						
						
							| 17 | 
							
								3 6 16
							 | 
							cmpt | 
							 |-  ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) )  | 
						
						
							| 18 | 
							
								1 2 17
							 | 
							cmpt | 
							 |-  ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) )  | 
						
						
							| 19 | 
							
								0 18
							 | 
							wceq | 
							 |-  invg = ( g e. _V |-> ( x e. ( Base ` g ) |-> ( iota_ w e. ( Base ` g ) ( w ( +g ` g ) x ) = ( 0g ` g ) ) ) )  |