Metamath Proof Explorer


Definition df-minusg

Description: Define inverse of group element. (Contributed by NM, 24-Aug-2011)

Ref Expression
Assertion df-minusg invg=gVxBasegιwBaseg|w+gx=0g

Detailed syntax breakdown

Step Hyp Ref Expression
0 cminusg classinvg
1 vg setvarg
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarg
6 5 4 cfv classBaseg
7 vw setvarw
8 7 cv setvarw
9 cplusg class+𝑔
10 5 9 cfv class+g
11 3 cv setvarx
12 8 11 10 co classw+gx
13 c0g class0𝑔
14 5 13 cfv class0g
15 12 14 wceq wffw+gx=0g
16 15 7 6 crio classιwBaseg|w+gx=0g
17 3 6 16 cmpt classxBasegιwBaseg|w+gx=0g
18 1 2 17 cmpt classgVxBasegιwBaseg|w+gx=0g
19 0 18 wceq wffinvg=gVxBasegιwBaseg|w+gx=0g