| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnngsum.b |
|
| 2 |
|
mulgnngsum.t |
|
| 3 |
|
mulgnngsum.f |
|
| 4 |
|
elnnuz |
|
| 5 |
4
|
biimpi |
|
| 6 |
5
|
adantr |
|
| 7 |
3
|
a1i |
|
| 8 |
|
eqidd |
|
| 9 |
|
simpr |
|
| 10 |
|
simpr |
|
| 11 |
10
|
adantr |
|
| 12 |
7 8 9 11
|
fvmptd |
|
| 13 |
|
elfznn |
|
| 14 |
|
fvconst2g |
|
| 15 |
10 13 14
|
syl2an |
|
| 16 |
12 15
|
eqtr4d |
|
| 17 |
6 16
|
seqfveq |
|
| 18 |
|
eqid |
|
| 19 |
|
elfvex |
|
| 20 |
19 1
|
eleq2s |
|
| 21 |
20
|
adantl |
|
| 22 |
10
|
adantr |
|
| 23 |
22 3
|
fmptd |
|
| 24 |
1 18 21 6 23
|
gsumval2 |
|
| 25 |
|
eqid |
|
| 26 |
1 18 2 25
|
mulgnn |
|
| 27 |
17 24 26
|
3eqtr4rd |
|