Metamath Proof Explorer


Theorem mulgnngsum

Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses mulgnngsum.b B = Base G
mulgnngsum.t · ˙ = G
mulgnngsum.f F = x 1 N X
Assertion mulgnngsum N X B N · ˙ X = G F

Proof

Step Hyp Ref Expression
1 mulgnngsum.b B = Base G
2 mulgnngsum.t · ˙ = G
3 mulgnngsum.f F = x 1 N X
4 elnnuz N N 1
5 4 biimpi N N 1
6 5 adantr N X B N 1
7 3 a1i N X B i 1 N F = x 1 N X
8 eqidd N X B i 1 N x = i X = X
9 simpr N X B i 1 N i 1 N
10 simpr N X B X B
11 10 adantr N X B i 1 N X B
12 7 8 9 11 fvmptd N X B i 1 N F i = X
13 elfznn i 1 N i
14 fvconst2g X B i × X i = X
15 10 13 14 syl2an N X B i 1 N × X i = X
16 12 15 eqtr4d N X B i 1 N F i = × X i
17 6 16 seqfveq N X B seq 1 + G F N = seq 1 + G × X N
18 eqid + G = + G
19 elfvex X Base G G V
20 19 1 eleq2s X B G V
21 20 adantl N X B G V
22 10 adantr N X B x 1 N X B
23 22 3 fmptd N X B F : 1 N B
24 1 18 21 6 23 gsumval2 N X B G F = seq 1 + G F N
25 eqid seq 1 + G × X = seq 1 + G × X
26 1 18 2 25 mulgnn N X B N · ˙ X = seq 1 + G × X N
27 17 24 26 3eqtr4rd N X B N · ˙ X = G F