Metamath Proof Explorer


Definition df-gsum

Description: Define the group sum (also called "iterated sum") for the structure G of a finite sequence of elements whose values are defined by the expression B and whose set of indices is A . It may be viewed as a product (if G is a multiplication), a sum (if G is an addition) or any other operation. The variable k is normally a free variable in B (i.e., B can be thought of as B ( k ) ). The definition is meaningful in different contexts, depending on the size of the index set A and each demanding different properties of G .

1. If A = (/) and G has an identity element, then the sum equals this identity. See gsum0 .

2. If A = ( M ... N ) and G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ( B ( 1 ) + B ( 2 ) ) + B ( 3 ) , etc. See gsumval2 and gsumnunsn .

3. If A is a finite set (or is nonzero for finitely many indices) and G is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. See gsumval3 .

4. If A is an infinite set and G is a Hausdorff topological group, then there is a meaningful sum, but gsum cannot handle this case. See df-tsms .

Remark: this definition is required here because the symbol gsum is already used in df-prds and df-imas . The related theorems are provided later, see gsumvalx . (Contributed by FL, 5-Sep-2010) (Revised by FL, 17-Oct-2011) (Revised by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion df-gsum Σ𝑔=wV,fVxBasew|yBasewx+wy=yy+wx=y/oifranfo0wifdomfranιx|mnmdomf=mnx=seqm+wfnιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgsu classΣ𝑔
1 vw setvarw
2 cvv classV
3 vf setvarf
4 vx setvarx
5 cbs classBase
6 1 cv setvarw
7 6 5 cfv classBasew
8 vy setvary
9 4 cv setvarx
10 cplusg class+𝑔
11 6 10 cfv class+w
12 8 cv setvary
13 9 12 11 co classx+wy
14 13 12 wceq wffx+wy=y
15 12 9 11 co classy+wx
16 15 12 wceq wffy+wx=y
17 14 16 wa wffx+wy=yy+wx=y
18 17 8 7 wral wffyBasewx+wy=yy+wx=y
19 18 4 7 crab classxBasew|yBasewx+wy=yy+wx=y
20 vo setvaro
21 3 cv setvarf
22 21 crn classranf
23 20 cv setvaro
24 22 23 wss wffranfo
25 c0g class0𝑔
26 6 25 cfv class0w
27 21 cdm classdomf
28 cfz class
29 28 crn classran
30 27 29 wcel wffdomfran
31 vm setvarm
32 vn setvarn
33 cuz class
34 31 cv setvarm
35 34 33 cfv classm
36 32 cv setvarn
37 34 36 28 co classmn
38 27 37 wceq wffdomf=mn
39 11 21 34 cseq classseqm+wf
40 36 39 cfv classseqm+wfn
41 9 40 wceq wffx=seqm+wfn
42 38 41 wa wffdomf=mnx=seqm+wfn
43 42 32 35 wrex wffnmdomf=mnx=seqm+wfn
44 43 31 wex wffmnmdomf=mnx=seqm+wfn
45 44 4 cio classιx|mnmdomf=mnx=seqm+wfn
46 vg setvarg
47 21 ccnv classf-1
48 2 23 cdif classVo
49 47 48 cima classf-1Vo
50 46 cv setvarg
51 c1 class1
52 chash class.
53 12 52 cfv classy
54 51 53 28 co class1y
55 54 12 50 wf1o wffg:1y1-1 ontoy
56 21 50 ccom classfg
57 11 56 51 cseq classseq1+wfg
58 53 57 cfv classseq1+wfgy
59 9 58 wceq wffx=seq1+wfgy
60 55 59 wa wffg:1y1-1 ontoyx=seq1+wfgy
61 60 8 49 wsbc wff[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
62 61 46 wex wffg[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
63 62 4 cio classιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
64 30 45 63 cif classifdomfranιx|mnmdomf=mnx=seqm+wfnιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
65 24 26 64 cif classifranfo0wifdomfranιx|mnmdomf=mnx=seqm+wfnιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
66 20 19 65 csb classxBasew|yBasewx+wy=yy+wx=y/oifranfo0wifdomfranιx|mnmdomf=mnx=seqm+wfnιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
67 1 3 2 2 66 cmpo classwV,fVxBasew|yBasewx+wy=yy+wx=y/oifranfo0wifdomfranιx|mnmdomf=mnx=seqm+wfnιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
68 0 67 wceq wffΣ𝑔=wV,fVxBasew|yBasewx+wy=yy+wx=y/oifranfo0wifdomfranιx|mnmdomf=mnx=seqm+wfnιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy