Metamath Proof Explorer


Theorem gsum0

Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypothesis gsum0.z 0˙=0G
Assertion gsum0 G=0˙

Proof

Step Hyp Ref Expression
1 gsum0.z 0˙=0G
2 eqid BaseG=BaseG
3 eqid +G=+G
4 eqid xBaseG|yBaseGx+Gy=yy+Gx=y=xBaseG|yBaseGx+Gy=yy+Gx=y
5 id GVGV
6 0ex V
7 6 a1i GVV
8 f0 :xBaseG|yBaseGx+Gy=yy+Gx=y
9 8 a1i GV:xBaseG|yBaseGx+Gy=yy+Gx=y
10 2 1 3 4 5 7 9 gsumval1 GVG=0˙
11 df-gsum Σ𝑔=wV,fVxBasew|yBasewx+wy=yy+wx=y/oifranfo0wifdomfranιx|mnmdomf=mnx=seqm+wfnιx|g[˙f-1Vo/y]˙g:1y1-1 ontoyx=seq1+wfgy
12 11 reldmmpo ReldomΣ𝑔
13 12 ovprc1 ¬GVG=
14 fvprc ¬GV0G=
15 1 14 eqtrid ¬GV0˙=
16 13 15 eqtr4d ¬GVG=0˙
17 10 16 pm2.61i G=0˙