Metamath Proof Explorer


Theorem gsumval1

Description: Value of the group sum operation when every element being summed is an identity of G . (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses gsumval1.b B=BaseG
gsumval1.z 0˙=0G
gsumval1.p +˙=+G
gsumval1.o O=xB|yBx+˙y=yy+˙x=y
gsumval1.g φGV
gsumval1.a φAW
gsumval1.f φF:AO
Assertion gsumval1 φGF=0˙

Proof

Step Hyp Ref Expression
1 gsumval1.b B=BaseG
2 gsumval1.z 0˙=0G
3 gsumval1.p +˙=+G
4 gsumval1.o O=xB|yBx+˙y=yy+˙x=y
5 gsumval1.g φGV
6 gsumval1.a φAW
7 gsumval1.f φF:AO
8 eqidd φF-1VO=F-1VO
9 4 ssrab3 OB
10 fss F:AOOBF:AB
11 7 9 10 sylancl φF:AB
12 1 2 3 4 8 5 6 11 gsumval φGF=ifranFO0˙ifAranιz|mnmA=mnz=seqm+˙Fnιz|ff:1F-1VO1-1 ontoF-1VOz=seq1+˙FfF-1VO
13 frn F:AOranFO
14 iftrue ranFOifranFO0˙ifAranιz|mnmA=mnz=seqm+˙Fnιz|ff:1F-1VO1-1 ontoF-1VOz=seq1+˙FfF-1VO=0˙
15 7 13 14 3syl φifranFO0˙ifAranιz|mnmA=mnz=seqm+˙Fnιz|ff:1F-1VO1-1 ontoF-1VOz=seq1+˙FfF-1VO=0˙
16 12 15 eqtrd φGF=0˙