Metamath Proof Explorer


Theorem gsumval1

Description: Value of the group sum operation when every element being summed is an identity of G . (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses gsumval1.b B = Base G
gsumval1.z 0 ˙ = 0 G
gsumval1.p + ˙ = + G
gsumval1.o O = x B | y B x + ˙ y = y y + ˙ x = y
gsumval1.g φ G V
gsumval1.a φ A W
gsumval1.f φ F : A O
Assertion gsumval1 φ G F = 0 ˙

Proof

Step Hyp Ref Expression
1 gsumval1.b B = Base G
2 gsumval1.z 0 ˙ = 0 G
3 gsumval1.p + ˙ = + G
4 gsumval1.o O = x B | y B x + ˙ y = y y + ˙ x = y
5 gsumval1.g φ G V
6 gsumval1.a φ A W
7 gsumval1.f φ F : A O
8 eqidd φ F -1 V O = F -1 V O
9 4 ssrab3 O B
10 fss F : A O O B F : A B
11 7 9 10 sylancl φ F : A B
12 1 2 3 4 8 5 6 11 gsumval φ G F = if ran F O 0 ˙ if A ran ι z | m n m A = m n z = seq m + ˙ F n ι z | f f : 1 F -1 V O 1-1 onto F -1 V O z = seq 1 + ˙ F f F -1 V O
13 frn F : A O ran F O
14 iftrue ran F O if ran F O 0 ˙ if A ran ι z | m n m A = m n z = seq m + ˙ F n ι z | f f : 1 F -1 V O 1-1 onto F -1 V O z = seq 1 + ˙ F f F -1 V O = 0 ˙
15 7 13 14 3syl φ if ran F O 0 ˙ if A ran ι z | m n m A = m n z = seq m + ˙ F n ι z | f f : 1 F -1 V O 1-1 onto F -1 V O z = seq 1 + ˙ F f F -1 V O = 0 ˙
16 12 15 eqtrd φ G F = 0 ˙