Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Iterated sums in a magma
gsumval
Next ⟩
gsumpropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsumval
Description:
Expand out the substitutions in
df-gsum
.
(Contributed by
Mario Carneiro
, 7-Dec-2014)
Ref
Expression
Hypotheses
gsumval.b
⊢
B
=
Base
G
gsumval.z
⊢
0
˙
=
0
G
gsumval.p
⊢
+
˙
=
+
G
gsumval.o
⊢
O
=
s
∈
B
|
∀
t
∈
B
s
+
˙
t
=
t
∧
t
+
˙
s
=
t
gsumval.w
⊢
φ
→
W
=
F
-1
V
∖
O
gsumval.g
⊢
φ
→
G
∈
V
gsumval.a
⊢
φ
→
A
∈
X
gsumval.f
⊢
φ
→
F
:
A
⟶
B
Assertion
gsumval
⊢
φ
→
∑
G
F
=
if
ran
⁡
F
⊆
O
0
˙
if
A
∈
ran
⁡
…
ι
x
|
∃
m
∃
n
∈
ℤ
≥
m
A
=
m
…
n
∧
x
=
seq
m
+
˙
F
⁡
n
ι
x
|
∃
f
f
:
1
…
W
⟶
1-1 onto
W
∧
x
=
seq
1
+
˙
F
∘
f
⁡
W
Proof
Step
Hyp
Ref
Expression
1
gsumval.b
⊢
B
=
Base
G
2
gsumval.z
⊢
0
˙
=
0
G
3
gsumval.p
⊢
+
˙
=
+
G
4
gsumval.o
⊢
O
=
s
∈
B
|
∀
t
∈
B
s
+
˙
t
=
t
∧
t
+
˙
s
=
t
5
gsumval.w
⊢
φ
→
W
=
F
-1
V
∖
O
6
gsumval.g
⊢
φ
→
G
∈
V
7
gsumval.a
⊢
φ
→
A
∈
X
8
gsumval.f
⊢
φ
→
F
:
A
⟶
B
9
1
fvexi
⊢
B
∈
V
10
9
a1i
⊢
φ
→
B
∈
V
11
fex2
⊢
F
:
A
⟶
B
∧
A
∈
X
∧
B
∈
V
→
F
∈
V
12
8
7
10
11
syl3anc
⊢
φ
→
F
∈
V
13
8
fdmd
⊢
φ
→
dom
⁡
F
=
A
14
1
2
3
4
5
6
12
13
gsumvalx
⊢
φ
→
∑
G
F
=
if
ran
⁡
F
⊆
O
0
˙
if
A
∈
ran
⁡
…
ι
x
|
∃
m
∃
n
∈
ℤ
≥
m
A
=
m
…
n
∧
x
=
seq
m
+
˙
F
⁡
n
ι
x
|
∃
f
f
:
1
…
W
⟶
1-1 onto
W
∧
x
=
seq
1
+
˙
F
∘
f
⁡
W