Metamath Proof Explorer


Theorem gsumval

Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses gsumval.b B = Base G
gsumval.z 0 ˙ = 0 G
gsumval.p + ˙ = + G
gsumval.o O = s B | t B s + ˙ t = t t + ˙ s = t
gsumval.w φ W = F -1 V O
gsumval.g φ G V
gsumval.a φ A X
gsumval.f φ F : A B
Assertion gsumval φ G F = if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W

Proof

Step Hyp Ref Expression
1 gsumval.b B = Base G
2 gsumval.z 0 ˙ = 0 G
3 gsumval.p + ˙ = + G
4 gsumval.o O = s B | t B s + ˙ t = t t + ˙ s = t
5 gsumval.w φ W = F -1 V O
6 gsumval.g φ G V
7 gsumval.a φ A X
8 gsumval.f φ F : A B
9 1 fvexi B V
10 9 a1i φ B V
11 fex2 F : A B A X B V F V
12 8 7 10 11 syl3anc φ F V
13 8 fdmd φ dom F = A
14 1 2 3 4 5 6 12 13 gsumvalx φ G F = if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W