Metamath Proof Explorer


Theorem gsumval

Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses gsumval.b B=BaseG
gsumval.z 0˙=0G
gsumval.p +˙=+G
gsumval.o O=sB|tBs+˙t=tt+˙s=t
gsumval.w φW=F-1VO
gsumval.g φGV
gsumval.a φAX
gsumval.f φF:AB
Assertion gsumval φGF=ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW

Proof

Step Hyp Ref Expression
1 gsumval.b B=BaseG
2 gsumval.z 0˙=0G
3 gsumval.p +˙=+G
4 gsumval.o O=sB|tBs+˙t=tt+˙s=t
5 gsumval.w φW=F-1VO
6 gsumval.g φGV
7 gsumval.a φAX
8 gsumval.f φF:AB
9 1 fvexi BV
10 9 a1i φBV
11 fex2 F:ABAXBVFV
12 8 7 10 11 syl3anc φFV
13 8 fdmd φdomF=A
14 1 2 3 4 5 6 12 13 gsumvalx φGF=ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW