Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Stefan O'Rear, 1-Feb-2015) (Proof shortened by Mario Carneiro, 18-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumpropd.f | |
|
gsumpropd.g | |
||
gsumpropd.h | |
||
gsumpropd.b | |
||
gsumpropd.p | |
||
Assertion | gsumpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumpropd.f | |
|
2 | gsumpropd.g | |
|
3 | gsumpropd.h | |
|
4 | gsumpropd.b | |
|
5 | gsumpropd.p | |
|
6 | 5 | oveqd | |
7 | 6 | eqeq1d | |
8 | 5 | oveqd | |
9 | 8 | eqeq1d | |
10 | 7 9 | anbi12d | |
11 | 4 10 | raleqbidv | |
12 | 4 11 | rabeqbidv | |
13 | 12 | sseq2d | |
14 | eqidd | |
|
15 | 5 | oveqdr | |
16 | 14 4 15 | grpidpropd | |
17 | 5 | seqeq2d | |
18 | 17 | fveq1d | |
19 | 18 | eqeq2d | |
20 | 19 | anbi2d | |
21 | 20 | rexbidv | |
22 | 21 | exbidv | |
23 | 22 | iotabidv | |
24 | 12 | difeq2d | |
25 | 24 | imaeq2d | |
26 | 25 | fveq2d | |
27 | 26 | oveq2d | |
28 | 27 | f1oeq2d | |
29 | 25 | f1oeq3d | |
30 | 28 29 | bitrd | |
31 | 5 | seqeq2d | |
32 | 31 26 | fveq12d | |
33 | 32 | eqeq2d | |
34 | 30 33 | anbi12d | |
35 | 34 | exbidv | |
36 | 35 | iotabidv | |
37 | 23 36 | ifeq12d | |
38 | 13 16 37 | ifbieq12d | |
39 | eqid | |
|
40 | eqid | |
|
41 | eqid | |
|
42 | eqid | |
|
43 | eqidd | |
|
44 | eqidd | |
|
45 | 39 40 41 42 43 2 1 44 | gsumvalx | |
46 | eqid | |
|
47 | eqid | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | eqidd | |
|
51 | 46 47 48 49 50 3 1 44 | gsumvalx | |
52 | 38 45 51 | 3eqtr4d | |