| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpropd.f |
|
| 2 |
|
gsumpropd.g |
|
| 3 |
|
gsumpropd.h |
|
| 4 |
|
gsumpropd.b |
|
| 5 |
|
gsumpropd.p |
|
| 6 |
5
|
oveqd |
|
| 7 |
6
|
eqeq1d |
|
| 8 |
5
|
oveqd |
|
| 9 |
8
|
eqeq1d |
|
| 10 |
7 9
|
anbi12d |
|
| 11 |
4 10
|
raleqbidv |
|
| 12 |
4 11
|
rabeqbidv |
|
| 13 |
12
|
sseq2d |
|
| 14 |
|
eqidd |
|
| 15 |
5
|
oveqdr |
|
| 16 |
14 4 15
|
grpidpropd |
|
| 17 |
5
|
seqeq2d |
|
| 18 |
17
|
fveq1d |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
19
|
anbi2d |
|
| 21 |
20
|
rexbidv |
|
| 22 |
21
|
exbidv |
|
| 23 |
22
|
iotabidv |
|
| 24 |
12
|
difeq2d |
|
| 25 |
24
|
imaeq2d |
|
| 26 |
25
|
fveq2d |
|
| 27 |
26
|
oveq2d |
|
| 28 |
27
|
f1oeq2d |
|
| 29 |
25
|
f1oeq3d |
|
| 30 |
28 29
|
bitrd |
|
| 31 |
5
|
seqeq2d |
|
| 32 |
31 26
|
fveq12d |
|
| 33 |
32
|
eqeq2d |
|
| 34 |
30 33
|
anbi12d |
|
| 35 |
34
|
exbidv |
|
| 36 |
35
|
iotabidv |
|
| 37 |
23 36
|
ifeq12d |
|
| 38 |
13 16 37
|
ifbieq12d |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
|
eqidd |
|
| 44 |
|
eqidd |
|
| 45 |
39 40 41 42 43 2 1 44
|
gsumvalx |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
|
eqidd |
|
| 51 |
46 47 48 49 50 3 1 44
|
gsumvalx |
|
| 52 |
38 45 51
|
3eqtr4d |
|