Metamath Proof Explorer


Theorem gsumpropd

Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Stefan O'Rear, 1-Feb-2015) (Proof shortened by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses gsumpropd.f φFV
gsumpropd.g φGW
gsumpropd.h φHX
gsumpropd.b φBaseG=BaseH
gsumpropd.p φ+G=+H
Assertion gsumpropd φGF=HF

Proof

Step Hyp Ref Expression
1 gsumpropd.f φFV
2 gsumpropd.g φGW
3 gsumpropd.h φHX
4 gsumpropd.b φBaseG=BaseH
5 gsumpropd.p φ+G=+H
6 5 oveqd φs+Gt=s+Ht
7 6 eqeq1d φs+Gt=ts+Ht=t
8 5 oveqd φt+Gs=t+Hs
9 8 eqeq1d φt+Gs=tt+Hs=t
10 7 9 anbi12d φs+Gt=tt+Gs=ts+Ht=tt+Hs=t
11 4 10 raleqbidv φtBaseGs+Gt=tt+Gs=ttBaseHs+Ht=tt+Hs=t
12 4 11 rabeqbidv φsBaseG|tBaseGs+Gt=tt+Gs=t=sBaseH|tBaseHs+Ht=tt+Hs=t
13 12 sseq2d φranFsBaseG|tBaseGs+Gt=tt+Gs=tranFsBaseH|tBaseHs+Ht=tt+Hs=t
14 eqidd φBaseG=BaseG
15 5 oveqdr φaBaseGbBaseGa+Gb=a+Hb
16 14 4 15 grpidpropd φ0G=0H
17 5 seqeq2d φseqm+GF=seqm+HF
18 17 fveq1d φseqm+GFn=seqm+HFn
19 18 eqeq2d φx=seqm+GFnx=seqm+HFn
20 19 anbi2d φdomF=mnx=seqm+GFndomF=mnx=seqm+HFn
21 20 rexbidv φnmdomF=mnx=seqm+GFnnmdomF=mnx=seqm+HFn
22 21 exbidv φmnmdomF=mnx=seqm+GFnmnmdomF=mnx=seqm+HFn
23 22 iotabidv φιx|mnmdomF=mnx=seqm+GFn=ιx|mnmdomF=mnx=seqm+HFn
24 12 difeq2d φVsBaseG|tBaseGs+Gt=tt+Gs=t=VsBaseH|tBaseHs+Ht=tt+Hs=t
25 24 imaeq2d φF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
26 25 fveq2d φF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
27 26 oveq2d φ1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t=1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
28 27 f1oeq2d φf:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tf:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=t
29 25 f1oeq3d φf:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tf:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
30 28 29 bitrd φf:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tf:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
31 5 seqeq2d φseq1+GFf=seq1+HFf
32 31 26 fveq12d φseq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
33 32 eqeq2d φx=seq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=tx=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
34 30 33 anbi12d φf:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tx=seq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=tf:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=tx=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
35 34 exbidv φff:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tx=seq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=tff:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=tx=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
36 35 iotabidv φιx|ff:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tx=seq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=ιx|ff:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=tx=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
37 23 36 ifeq12d φifdomFranιx|mnmdomF=mnx=seqm+GFnιx|ff:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tx=seq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=ifdomFranιx|mnmdomF=mnx=seqm+HFnιx|ff:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=tx=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
38 13 16 37 ifbieq12d φifranFsBaseG|tBaseGs+Gt=tt+Gs=t0GifdomFranιx|mnmdomF=mnx=seqm+GFnιx|ff:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tx=seq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=ifranFsBaseH|tBaseHs+Ht=tt+Hs=t0HifdomFranιx|mnmdomF=mnx=seqm+HFnιx|ff:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=tx=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
39 eqid BaseG=BaseG
40 eqid 0G=0G
41 eqid +G=+G
42 eqid sBaseG|tBaseGs+Gt=tt+Gs=t=sBaseG|tBaseGs+Gt=tt+Gs=t
43 eqidd φF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=F-1VsBaseG|tBaseGs+Gt=tt+Gs=t
44 eqidd φdomF=domF
45 39 40 41 42 43 2 1 44 gsumvalx φGF=ifranFsBaseG|tBaseGs+Gt=tt+Gs=t0GifdomFranιx|mnmdomF=mnx=seqm+GFnιx|ff:1F-1VsBaseG|tBaseGs+Gt=tt+Gs=t1-1 ontoF-1VsBaseG|tBaseGs+Gt=tt+Gs=tx=seq1+GFfF-1VsBaseG|tBaseGs+Gt=tt+Gs=t
46 eqid BaseH=BaseH
47 eqid 0H=0H
48 eqid +H=+H
49 eqid sBaseH|tBaseHs+Ht=tt+Hs=t=sBaseH|tBaseHs+Ht=tt+Hs=t
50 eqidd φF-1VsBaseH|tBaseHs+Ht=tt+Hs=t=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
51 46 47 48 49 50 3 1 44 gsumvalx φHF=ifranFsBaseH|tBaseHs+Ht=tt+Hs=t0HifdomFranιx|mnmdomF=mnx=seqm+HFnιx|ff:1F-1VsBaseH|tBaseHs+Ht=tt+Hs=t1-1 ontoF-1VsBaseH|tBaseHs+Ht=tt+Hs=tx=seq1+HFfF-1VsBaseH|tBaseHs+Ht=tt+Hs=t
52 38 45 51 3eqtr4d φGF=HF