| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndpropd.1 |  | 
						
							| 2 |  | mndpropd.2 |  | 
						
							| 3 |  | mndpropd.3 |  | 
						
							| 4 |  | simplr |  | 
						
							| 5 |  | simprl |  | 
						
							| 6 | 1 | ad2antrr |  | 
						
							| 7 | 5 6 | eleqtrd |  | 
						
							| 8 |  | simprr |  | 
						
							| 9 | 8 6 | eleqtrd |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 10 11 | mndcl |  | 
						
							| 13 | 4 7 9 12 | syl3anc |  | 
						
							| 14 | 13 6 | eleqtrrd |  | 
						
							| 15 | 14 | ralrimivva |  | 
						
							| 16 | 15 | ex |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 |  | simprl |  | 
						
							| 19 | 2 | ad2antrr |  | 
						
							| 20 | 18 19 | eleqtrd |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 | 21 19 | eleqtrd |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 23 24 | mndcl |  | 
						
							| 26 | 17 20 22 25 | syl3anc |  | 
						
							| 27 | 3 | adantlr |  | 
						
							| 28 | 26 27 19 | 3eltr4d |  | 
						
							| 29 | 28 | ralrimivva |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 3 | oveqrspc2v |  | 
						
							| 32 | 31 | adantlr |  | 
						
							| 33 | 32 | eleq1d |  | 
						
							| 34 |  | simplll |  | 
						
							| 35 |  | simplrl |  | 
						
							| 36 |  | simplrr |  | 
						
							| 37 |  | simpllr |  | 
						
							| 38 |  | ovrspc2v |  | 
						
							| 39 | 35 36 37 38 | syl21anc |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 3 | oveqrspc2v |  | 
						
							| 42 | 34 39 40 41 | syl12anc |  | 
						
							| 43 | 34 35 36 31 | syl12anc |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 42 44 | eqtrd |  | 
						
							| 46 |  | ovrspc2v |  | 
						
							| 47 | 36 40 37 46 | syl21anc |  | 
						
							| 48 | 3 | oveqrspc2v |  | 
						
							| 49 | 34 35 47 48 | syl12anc |  | 
						
							| 50 | 3 | oveqrspc2v |  | 
						
							| 51 | 34 36 40 50 | syl12anc |  | 
						
							| 52 | 51 | oveq2d |  | 
						
							| 53 | 49 52 | eqtrd |  | 
						
							| 54 | 45 53 | eqeq12d |  | 
						
							| 55 | 54 | ralbidva |  | 
						
							| 56 | 33 55 | anbi12d |  | 
						
							| 57 | 56 | 2ralbidva |  | 
						
							| 58 | 1 | adantr |  | 
						
							| 59 | 58 | eleq2d |  | 
						
							| 60 | 58 | raleqdv |  | 
						
							| 61 | 59 60 | anbi12d |  | 
						
							| 62 | 58 61 | raleqbidv |  | 
						
							| 63 | 58 62 | raleqbidv |  | 
						
							| 64 | 2 | adantr |  | 
						
							| 65 | 64 | eleq2d |  | 
						
							| 66 | 64 | raleqdv |  | 
						
							| 67 | 65 66 | anbi12d |  | 
						
							| 68 | 64 67 | raleqbidv |  | 
						
							| 69 | 64 68 | raleqbidv |  | 
						
							| 70 | 57 63 69 | 3bitr3d |  | 
						
							| 71 |  | simplll |  | 
						
							| 72 |  | simplr |  | 
						
							| 73 |  | simpr |  | 
						
							| 74 | 3 | oveqrspc2v |  | 
						
							| 75 | 71 72 73 74 | syl12anc |  | 
						
							| 76 | 75 | eqeq1d |  | 
						
							| 77 | 3 | oveqrspc2v |  | 
						
							| 78 | 71 73 72 77 | syl12anc |  | 
						
							| 79 | 78 | eqeq1d |  | 
						
							| 80 | 76 79 | anbi12d |  | 
						
							| 81 | 80 | ralbidva |  | 
						
							| 82 | 81 | rexbidva |  | 
						
							| 83 | 58 | raleqdv |  | 
						
							| 84 | 58 83 | rexeqbidv |  | 
						
							| 85 | 64 | raleqdv |  | 
						
							| 86 | 64 85 | rexeqbidv |  | 
						
							| 87 | 82 84 86 | 3bitr3d |  | 
						
							| 88 | 70 87 | anbi12d |  | 
						
							| 89 | 10 11 | ismnd |  | 
						
							| 90 | 23 24 | ismnd |  | 
						
							| 91 | 88 89 90 | 3bitr4g |  | 
						
							| 92 | 91 | ex |  | 
						
							| 93 | 16 30 92 | pm5.21ndd |  |