Metamath Proof Explorer


Theorem mndpropd

Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses mndpropd.1 φB=BaseK
mndpropd.2 φB=BaseL
mndpropd.3 φxByBx+Ky=x+Ly
Assertion mndpropd φKMndLMnd

Proof

Step Hyp Ref Expression
1 mndpropd.1 φB=BaseK
2 mndpropd.2 φB=BaseL
3 mndpropd.3 φxByBx+Ky=x+Ly
4 simplr φKMndxByBKMnd
5 simprl φKMndxByBxB
6 1 ad2antrr φKMndxByBB=BaseK
7 5 6 eleqtrd φKMndxByBxBaseK
8 simprr φKMndxByByB
9 8 6 eleqtrd φKMndxByByBaseK
10 eqid BaseK=BaseK
11 eqid +K=+K
12 10 11 mndcl KMndxBaseKyBaseKx+KyBaseK
13 4 7 9 12 syl3anc φKMndxByBx+KyBaseK
14 13 6 eleqtrrd φKMndxByBx+KyB
15 14 ralrimivva φKMndxByBx+KyB
16 15 ex φKMndxByBx+KyB
17 simplr φLMndxByBLMnd
18 simprl φLMndxByBxB
19 2 ad2antrr φLMndxByBB=BaseL
20 18 19 eleqtrd φLMndxByBxBaseL
21 simprr φLMndxByByB
22 21 19 eleqtrd φLMndxByByBaseL
23 eqid BaseL=BaseL
24 eqid +L=+L
25 23 24 mndcl LMndxBaseLyBaseLx+LyBaseL
26 17 20 22 25 syl3anc φLMndxByBx+LyBaseL
27 3 adantlr φLMndxByBx+Ky=x+Ly
28 26 27 19 3eltr4d φLMndxByBx+KyB
29 28 ralrimivva φLMndxByBx+KyB
30 29 ex φLMndxByBx+KyB
31 3 oveqrspc2v φuBvBu+Kv=u+Lv
32 31 adantlr φxByBx+KyBuBvBu+Kv=u+Lv
33 32 eleq1d φxByBx+KyBuBvBu+KvBu+LvB
34 simplll φxByBx+KyBuBvBwBφ
35 simplrl φxByBx+KyBuBvBwBuB
36 simplrr φxByBx+KyBuBvBwBvB
37 simpllr φxByBx+KyBuBvBwBxByBx+KyB
38 ovrspc2v uBvBxByBx+KyBu+KvB
39 35 36 37 38 syl21anc φxByBx+KyBuBvBwBu+KvB
40 simpr φxByBx+KyBuBvBwBwB
41 3 oveqrspc2v φu+KvBwBu+Kv+Kw=u+Kv+Lw
42 34 39 40 41 syl12anc φxByBx+KyBuBvBwBu+Kv+Kw=u+Kv+Lw
43 34 35 36 31 syl12anc φxByBx+KyBuBvBwBu+Kv=u+Lv
44 43 oveq1d φxByBx+KyBuBvBwBu+Kv+Lw=u+Lv+Lw
45 42 44 eqtrd φxByBx+KyBuBvBwBu+Kv+Kw=u+Lv+Lw
46 ovrspc2v vBwBxByBx+KyBv+KwB
47 36 40 37 46 syl21anc φxByBx+KyBuBvBwBv+KwB
48 3 oveqrspc2v φuBv+KwBu+Kv+Kw=u+Lv+Kw
49 34 35 47 48 syl12anc φxByBx+KyBuBvBwBu+Kv+Kw=u+Lv+Kw
50 3 oveqrspc2v φvBwBv+Kw=v+Lw
51 34 36 40 50 syl12anc φxByBx+KyBuBvBwBv+Kw=v+Lw
52 51 oveq2d φxByBx+KyBuBvBwBu+Lv+Kw=u+Lv+Lw
53 49 52 eqtrd φxByBx+KyBuBvBwBu+Kv+Kw=u+Lv+Lw
54 45 53 eqeq12d φxByBx+KyBuBvBwBu+Kv+Kw=u+Kv+Kwu+Lv+Lw=u+Lv+Lw
55 54 ralbidva φxByBx+KyBuBvBwBu+Kv+Kw=u+Kv+KwwBu+Lv+Lw=u+Lv+Lw
56 33 55 anbi12d φxByBx+KyBuBvBu+KvBwBu+Kv+Kw=u+Kv+Kwu+LvBwBu+Lv+Lw=u+Lv+Lw
57 56 2ralbidva φxByBx+KyBuBvBu+KvBwBu+Kv+Kw=u+Kv+KwuBvBu+LvBwBu+Lv+Lw=u+Lv+Lw
58 1 adantr φxByBx+KyBB=BaseK
59 58 eleq2d φxByBx+KyBu+KvBu+KvBaseK
60 58 raleqdv φxByBx+KyBwBu+Kv+Kw=u+Kv+KwwBaseKu+Kv+Kw=u+Kv+Kw
61 59 60 anbi12d φxByBx+KyBu+KvBwBu+Kv+Kw=u+Kv+Kwu+KvBaseKwBaseKu+Kv+Kw=u+Kv+Kw
62 58 61 raleqbidv φxByBx+KyBvBu+KvBwBu+Kv+Kw=u+Kv+KwvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+Kw
63 58 62 raleqbidv φxByBx+KyBuBvBu+KvBwBu+Kv+Kw=u+Kv+KwuBaseKvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+Kw
64 2 adantr φxByBx+KyBB=BaseL
65 64 eleq2d φxByBx+KyBu+LvBu+LvBaseL
66 64 raleqdv φxByBx+KyBwBu+Lv+Lw=u+Lv+LwwBaseLu+Lv+Lw=u+Lv+Lw
67 65 66 anbi12d φxByBx+KyBu+LvBwBu+Lv+Lw=u+Lv+Lwu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
68 64 67 raleqbidv φxByBx+KyBvBu+LvBwBu+Lv+Lw=u+Lv+LwvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
69 64 68 raleqbidv φxByBx+KyBuBvBu+LvBwBu+Lv+Lw=u+Lv+LwuBaseLvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
70 57 63 69 3bitr3d φxByBx+KyBuBaseKvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+KwuBaseLvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+Lw
71 simplll φxByBx+KyBsBuBφ
72 simplr φxByBx+KyBsBuBsB
73 simpr φxByBx+KyBsBuBuB
74 3 oveqrspc2v φsBuBs+Ku=s+Lu
75 71 72 73 74 syl12anc φxByBx+KyBsBuBs+Ku=s+Lu
76 75 eqeq1d φxByBx+KyBsBuBs+Ku=us+Lu=u
77 3 oveqrspc2v φuBsBu+Ks=u+Ls
78 71 73 72 77 syl12anc φxByBx+KyBsBuBu+Ks=u+Ls
79 78 eqeq1d φxByBx+KyBsBuBu+Ks=uu+Ls=u
80 76 79 anbi12d φxByBx+KyBsBuBs+Ku=uu+Ks=us+Lu=uu+Ls=u
81 80 ralbidva φxByBx+KyBsBuBs+Ku=uu+Ks=uuBs+Lu=uu+Ls=u
82 81 rexbidva φxByBx+KyBsBuBs+Ku=uu+Ks=usBuBs+Lu=uu+Ls=u
83 58 raleqdv φxByBx+KyBuBs+Ku=uu+Ks=uuBaseKs+Ku=uu+Ks=u
84 58 83 rexeqbidv φxByBx+KyBsBuBs+Ku=uu+Ks=usBaseKuBaseKs+Ku=uu+Ks=u
85 64 raleqdv φxByBx+KyBuBs+Lu=uu+Ls=uuBaseLs+Lu=uu+Ls=u
86 64 85 rexeqbidv φxByBx+KyBsBuBs+Lu=uu+Ls=usBaseLuBaseLs+Lu=uu+Ls=u
87 82 84 86 3bitr3d φxByBx+KyBsBaseKuBaseKs+Ku=uu+Ks=usBaseLuBaseLs+Lu=uu+Ls=u
88 70 87 anbi12d φxByBx+KyBuBaseKvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+KwsBaseKuBaseKs+Ku=uu+Ks=uuBaseLvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+LwsBaseLuBaseLs+Lu=uu+Ls=u
89 10 11 ismnd KMnduBaseKvBaseKu+KvBaseKwBaseKu+Kv+Kw=u+Kv+KwsBaseKuBaseKs+Ku=uu+Ks=u
90 23 24 ismnd LMnduBaseLvBaseLu+LvBaseLwBaseLu+Lv+Lw=u+Lv+LwsBaseLuBaseLs+Lu=uu+Ls=u
91 88 89 90 3bitr4g φxByBx+KyBKMndLMnd
92 91 ex φxByBx+KyBKMndLMnd
93 16 30 92 pm5.21ndd φKMndLMnd