Metamath Proof Explorer


Theorem 3eltr4d

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr4d.1 φ A B
3eltr4d.2 φ C = A
3eltr4d.3 φ D = B
Assertion 3eltr4d φ C D

Proof

Step Hyp Ref Expression
1 3eltr4d.1 φ A B
2 3eltr4d.2 φ C = A
3 3eltr4d.3 φ D = B
4 1 3 eleqtrrd φ A D
5 2 4 eqeltrd φ C D