Metamath Proof Explorer
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
3eltr4d.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
|
|
3eltr4d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐴 ) |
|
|
3eltr4d.3 |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
|
Assertion |
3eltr4d |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3eltr4d.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
2 |
|
3eltr4d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐴 ) |
3 |
|
3eltr4d.3 |
⊢ ( 𝜑 → 𝐷 = 𝐵 ) |
4 |
1 3
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
5 |
2 4
|
eqeltrd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |