Metamath Proof Explorer


Theorem 3eltr4d

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr4d.1 ( 𝜑𝐴𝐵 )
3eltr4d.2 ( 𝜑𝐶 = 𝐴 )
3eltr4d.3 ( 𝜑𝐷 = 𝐵 )
Assertion 3eltr4d ( 𝜑𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 3eltr4d.1 ( 𝜑𝐴𝐵 )
2 3eltr4d.2 ( 𝜑𝐶 = 𝐴 )
3 3eltr4d.3 ( 𝜑𝐷 = 𝐵 )
4 1 3 eleqtrrd ( 𝜑𝐴𝐷 )
5 2 4 eqeltrd ( 𝜑𝐶𝐷 )