Metamath Proof Explorer


Theorem 3eltr4d

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr4d.1
|- ( ph -> A e. B )
3eltr4d.2
|- ( ph -> C = A )
3eltr4d.3
|- ( ph -> D = B )
Assertion 3eltr4d
|- ( ph -> C e. D )

Proof

Step Hyp Ref Expression
1 3eltr4d.1
 |-  ( ph -> A e. B )
2 3eltr4d.2
 |-  ( ph -> C = A )
3 3eltr4d.3
 |-  ( ph -> D = B )
4 1 3 eleqtrrd
 |-  ( ph -> A e. D )
5 2 4 eqeltrd
 |-  ( ph -> C e. D )