Metamath Proof Explorer


Theorem mndcl

Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Proof shortened by AV, 8-Feb-2020)

Ref Expression
Hypotheses mndcl.b B=BaseG
mndcl.p +˙=+G
Assertion mndcl GMndXBYBX+˙YB

Proof

Step Hyp Ref Expression
1 mndcl.b B=BaseG
2 mndcl.p +˙=+G
3 mndmgm GMndGMgm
4 1 2 mgmcl GMgmXBYBX+˙YB
5 3 4 syl3an1 GMndXBYBX+˙YB