Database  
				BASIC ALGEBRAIC STRUCTURES  
				Monoids  
				Definition and basic properties of monoids  
				mndcl  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Closure of the operation of a monoid.  (Contributed by NM , 14-Aug-2011) 
       (Revised by Mario Carneiro , 6-Jan-2015)   (Proof shortened by AV , 8-Feb-2020) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						mndcl.b  
						⊢  𝐵   =  ( Base ‘ 𝐺  )  
					 
					
						 
						 
						mndcl.p  
						⊢   +    =  ( +g  ‘ 𝐺  )  
					 
				
					 
					Assertion 
					mndcl  
					⊢   ( ( 𝐺   ∈  Mnd  ∧  𝑋   ∈  𝐵   ∧  𝑌   ∈  𝐵  )  →  ( 𝑋   +   𝑌  )  ∈  𝐵  )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							mndcl.b  
							⊢  𝐵   =  ( Base ‘ 𝐺  )  
						 
						
							2  
							
								
							 
							mndcl.p  
							⊢   +    =  ( +g  ‘ 𝐺  )  
						 
						
							3  
							
								
							 
							mndmgm  
							⊢  ( 𝐺   ∈  Mnd  →  𝐺   ∈  Mgm )  
						 
						
							4  
							
								1  2 
							 
							mgmcl  
							⊢  ( ( 𝐺   ∈  Mgm  ∧  𝑋   ∈  𝐵   ∧  𝑌   ∈  𝐵  )  →  ( 𝑋   +   𝑌  )  ∈  𝐵  )  
						 
						
							5  
							
								3  4 
							 
							syl3an1  
							⊢  ( ( 𝐺   ∈  Mnd  ∧  𝑋   ∈  𝐵   ∧  𝑌   ∈  𝐵  )  →  ( 𝑋   +   𝑌  )  ∈  𝐵  )