| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mgmcl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							mgmcl.o | 
							⊢  ⚬   =  ( +g ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ismgm | 
							⊢ ( 𝑀  ∈  Mgm  →  ( 𝑀  ∈  Mgm  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ibi | 
							⊢ ( 𝑀  ∈  Mgm  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							ovrspc2v | 
							⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 )  →  ( 𝑋  ⚬  𝑌 )  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							expcom | 
							⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵  →  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ⚬  𝑌 )  ∈  𝐵 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							syl | 
							⊢ ( 𝑀  ∈  Mgm  →  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ⚬  𝑌 )  ∈  𝐵 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3impib | 
							⊢ ( ( 𝑀  ∈  Mgm  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ⚬  𝑌 )  ∈  𝐵 )  |