| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ismgm.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							ismgm.o | 
							⊢  ⚬   =  ( +g ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							fvexd | 
							⊢ ( 𝑚  =  𝑀  →  ( Base ‘ 𝑚 )  ∈  V )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑀  →  ( Base ‘ 𝑚 )  =  ( Base ‘ 𝑀 ) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							eqtr4di | 
							⊢ ( 𝑚  =  𝑀  →  ( Base ‘ 𝑚 )  =  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  →  ( +g ‘ 𝑚 )  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑚  =  𝑀  →  ( +g ‘ 𝑚 )  =  ( +g ‘ 𝑀 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  →  ( +g ‘ 𝑚 )  =  ( +g ‘ 𝑀 ) )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqtr4di | 
							⊢ ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  →  ( +g ‘ 𝑚 )  =   ⚬  )  | 
						
						
							| 10 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  ∧  𝑜  =   ⚬  )  →  𝑏  =  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq | 
							⊢ ( 𝑜  =   ⚬   →  ( 𝑥 𝑜 𝑦 )  =  ( 𝑥  ⚬  𝑦 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							⊢ ( ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  ∧  𝑜  =   ⚬  )  →  ( 𝑥 𝑜 𝑦 )  =  ( 𝑥  ⚬  𝑦 ) )  | 
						
						
							| 13 | 
							
								12 10
							 | 
							eleq12d | 
							⊢ ( ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  ∧  𝑜  =   ⚬  )  →  ( ( 𝑥 𝑜 𝑦 )  ∈  𝑏  ↔  ( 𝑥  ⚬  𝑦 )  ∈  𝐵 ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							raleqbidv | 
							⊢ ( ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  ∧  𝑜  =   ⚬  )  →  ( ∀ 𝑦  ∈  𝑏 ( 𝑥 𝑜 𝑦 )  ∈  𝑏  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							raleqbidv | 
							⊢ ( ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  ∧  𝑜  =   ⚬  )  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝑜 𝑦 )  ∈  𝑏  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 ) )  | 
						
						
							| 16 | 
							
								6 9 15
							 | 
							sbcied2 | 
							⊢ ( ( 𝑚  =  𝑀  ∧  𝑏  =  𝐵 )  →  ( [ ( +g ‘ 𝑚 )  /  𝑜 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝑜 𝑦 )  ∈  𝑏  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 ) )  | 
						
						
							| 17 | 
							
								3 5 16
							 | 
							sbcied2 | 
							⊢ ( 𝑚  =  𝑀  →  ( [ ( Base ‘ 𝑚 )  /  𝑏 ] [ ( +g ‘ 𝑚 )  /  𝑜 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝑜 𝑦 )  ∈  𝑏  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							df-mgm | 
							⊢ Mgm  =  { 𝑚  ∣  [ ( Base ‘ 𝑚 )  /  𝑏 ] [ ( +g ‘ 𝑚 )  /  𝑜 ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝑜 𝑦 )  ∈  𝑏 }  | 
						
						
							| 19 | 
							
								17 18
							 | 
							elab2g | 
							⊢ ( 𝑀  ∈  𝑉  →  ( 𝑀  ∈  Mgm  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ⚬  𝑦 )  ∈  𝐵 ) )  |