Metamath Proof Explorer


Definition df-mgm

Description: Amagma is a set equipped with an everywhere defined internal operation. Definition 1 in BourbakiAlg1 p. 1, or definition of a groupoid in section I.1 of Bruck p. 1. Note: The term "groupoid" is now widely used to refer to other objects: (small) categories all of whose morphisms are invertible, or groups with a partial function replacing the binary operation. Therefore, we will only use the term "magma" for the present notion in set.mm. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Assertion df-mgm Mgm=g|[˙Baseg/b]˙[˙+g/o]˙xbybxoyb

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgm classMgm
1 vg setvarg
2 cbs classBase
3 1 cv setvarg
4 3 2 cfv classBaseg
5 vb setvarb
6 cplusg class+𝑔
7 3 6 cfv class+g
8 vo setvaro
9 vx setvarx
10 5 cv setvarb
11 vy setvary
12 9 cv setvarx
13 8 cv setvaro
14 11 cv setvary
15 12 14 13 co classxoy
16 15 10 wcel wffxoyb
17 16 11 10 wral wffybxoyb
18 17 9 10 wral wffxbybxoyb
19 18 8 7 wsbc wff[˙+g/o]˙xbybxoyb
20 19 5 4 wsbc wff[˙Baseg/b]˙[˙+g/o]˙xbybxoyb
21 20 1 cab classg|[˙Baseg/b]˙[˙+g/o]˙xbybxoyb
22 0 21 wceq wffMgm=g|[˙Baseg/b]˙[˙+g/o]˙xbybxoyb