Description: Amonoid is a semigroup, which has a two-sided neutral element.
Definition 2 in BourbakiAlg1 p. 12. In other words (according to the
definition in Lang p. 3), a monoid is a set equipped with an
everywhere defined internal operation (see mndcl ), whose operation is
associative (see mndass ) and has a two-sided neutral element (see
mndid ), see also ismnd . (Contributed by Mario Carneiro, 6-Jan-2015)(Revised by AV, 1-Feb-2020)
Could not format assertion : No typesetting found for |- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } with typecode |-
Could not format { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } : No typesetting found for class { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } with typecode class
Could not format Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } : No typesetting found for wff Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) } with typecode wff