Metamath Proof Explorer


Theorem ismnddef

Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009) (Revised by AV, 1-Feb-2020)

Ref Expression
Hypotheses ismnddef.b B=BaseG
ismnddef.p +˙=+G
Assertion ismnddef Could not format assertion : No typesetting found for |- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ismnddef.b B=BaseG
2 ismnddef.p +˙=+G
3 fvex BasegV
4 fvex +gV
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=B
7 6 eqeq2d g=Gb=Basegb=B
8 fveq2 g=G+g=+G
9 8 2 eqtr4di g=G+g=+˙
10 9 eqeq2d g=Gp=+gp=+˙
11 7 10 anbi12d g=Gb=Basegp=+gb=Bp=+˙
12 simpl b=Bp=+˙b=B
13 oveq p=+˙epa=e+˙a
14 13 eqeq1d p=+˙epa=ae+˙a=a
15 oveq p=+˙ape=a+˙e
16 15 eqeq1d p=+˙ape=aa+˙e=a
17 14 16 anbi12d p=+˙epa=aape=ae+˙a=aa+˙e=a
18 17 adantl b=Bp=+˙epa=aape=ae+˙a=aa+˙e=a
19 12 18 raleqbidv b=Bp=+˙abepa=aape=aaBe+˙a=aa+˙e=a
20 12 19 rexeqbidv b=Bp=+˙ebabepa=aape=aeBaBe+˙a=aa+˙e=a
21 11 20 syl6bi g=Gb=Basegp=+gebabepa=aape=aeBaBe+˙a=aa+˙e=a
22 3 4 21 sbc2iedv g=G[˙Baseg/b]˙[˙+g/p]˙ebabepa=aape=aeBaBe+˙a=aa+˙e=a
23 df-mnd Could not format Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. a e. b ( ( e p a ) = a /\ ( a p e ) = a ) } : No typesetting found for |- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. a e. b ( ( e p a ) = a /\ ( a p e ) = a ) } with typecode |-
24 22 23 elrab2 Could not format ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) : No typesetting found for |- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. a e. B ( ( e .+ a ) = a /\ ( a .+ e ) = a ) ) ) with typecode |-