| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ismnddef.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							ismnddef.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ 𝑔 )  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							fvex | 
							⊢ ( +g ‘ 𝑔 )  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								5 1
							 | 
							eqtr4di | 
							⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  𝐵 )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq2d | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑏  =  ( Base ‘ 𝑔 )  ↔  𝑏  =  𝐵 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =  ( +g ‘ 𝐺 ) )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqtr4di | 
							⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =   +  )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq2d | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑝  =  ( +g ‘ 𝑔 )  ↔  𝑝  =   +  ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							anbi12d | 
							⊢ ( 𝑔  =  𝐺  →  ( ( 𝑏  =  ( Base ‘ 𝑔 )  ∧  𝑝  =  ( +g ‘ 𝑔 ) )  ↔  ( 𝑏  =  𝐵  ∧  𝑝  =   +  ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  →  𝑏  =  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq | 
							⊢ ( 𝑝  =   +   →  ( 𝑒 𝑝 𝑎 )  =  ( 𝑒  +  𝑎 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1d | 
							⊢ ( 𝑝  =   +   →  ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ↔  ( 𝑒  +  𝑎 )  =  𝑎 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq | 
							⊢ ( 𝑝  =   +   →  ( 𝑎 𝑝 𝑒 )  =  ( 𝑎  +  𝑒 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqeq1d | 
							⊢ ( 𝑝  =   +   →  ( ( 𝑎 𝑝 𝑒 )  =  𝑎  ↔  ( 𝑎  +  𝑒 )  =  𝑎 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							anbi12d | 
							⊢ ( 𝑝  =   +   →  ( ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ∧  ( 𝑎 𝑝 𝑒 )  =  𝑎 )  ↔  ( ( 𝑒  +  𝑎 )  =  𝑎  ∧  ( 𝑎  +  𝑒 )  =  𝑎 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  →  ( ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ∧  ( 𝑎 𝑝 𝑒 )  =  𝑎 )  ↔  ( ( 𝑒  +  𝑎 )  =  𝑎  ∧  ( 𝑎  +  𝑒 )  =  𝑎 ) ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							raleqbidv | 
							⊢ ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  →  ( ∀ 𝑎  ∈  𝑏 ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ∧  ( 𝑎 𝑝 𝑒 )  =  𝑎 )  ↔  ∀ 𝑎  ∈  𝐵 ( ( 𝑒  +  𝑎 )  =  𝑎  ∧  ( 𝑎  +  𝑒 )  =  𝑎 ) ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							rexeqbidv | 
							⊢ ( ( 𝑏  =  𝐵  ∧  𝑝  =   +  )  →  ( ∃ 𝑒  ∈  𝑏 ∀ 𝑎  ∈  𝑏 ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ∧  ( 𝑎 𝑝 𝑒 )  =  𝑎 )  ↔  ∃ 𝑒  ∈  𝐵 ∀ 𝑎  ∈  𝐵 ( ( 𝑒  +  𝑎 )  =  𝑎  ∧  ( 𝑎  +  𝑒 )  =  𝑎 ) ) )  | 
						
						
							| 21 | 
							
								11 20
							 | 
							biimtrdi | 
							⊢ ( 𝑔  =  𝐺  →  ( ( 𝑏  =  ( Base ‘ 𝑔 )  ∧  𝑝  =  ( +g ‘ 𝑔 ) )  →  ( ∃ 𝑒  ∈  𝑏 ∀ 𝑎  ∈  𝑏 ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ∧  ( 𝑎 𝑝 𝑒 )  =  𝑎 )  ↔  ∃ 𝑒  ∈  𝐵 ∀ 𝑎  ∈  𝐵 ( ( 𝑒  +  𝑎 )  =  𝑎  ∧  ( 𝑎  +  𝑒 )  =  𝑎 ) ) ) )  | 
						
						
							| 22 | 
							
								3 4 21
							 | 
							sbc2iedv | 
							⊢ ( 𝑔  =  𝐺  →  ( [ ( Base ‘ 𝑔 )  /  𝑏 ] [ ( +g ‘ 𝑔 )  /  𝑝 ] ∃ 𝑒  ∈  𝑏 ∀ 𝑎  ∈  𝑏 ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ∧  ( 𝑎 𝑝 𝑒 )  =  𝑎 )  ↔  ∃ 𝑒  ∈  𝐵 ∀ 𝑎  ∈  𝐵 ( ( 𝑒  +  𝑎 )  =  𝑎  ∧  ( 𝑎  +  𝑒 )  =  𝑎 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							df-mnd | 
							⊢ Mnd  =  { 𝑔  ∈  Smgrp  ∣  [ ( Base ‘ 𝑔 )  /  𝑏 ] [ ( +g ‘ 𝑔 )  /  𝑝 ] ∃ 𝑒  ∈  𝑏 ∀ 𝑎  ∈  𝑏 ( ( 𝑒 𝑝 𝑎 )  =  𝑎  ∧  ( 𝑎 𝑝 𝑒 )  =  𝑎 ) }  | 
						
						
							| 24 | 
							
								22 23
							 | 
							elrab2 | 
							⊢ ( 𝐺  ∈  Mnd  ↔  ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑒  ∈  𝐵 ∀ 𝑎  ∈  𝐵 ( ( 𝑒  +  𝑎 )  =  𝑎  ∧  ( 𝑎  +  𝑒 )  =  𝑎 ) ) )  |