Database  
				BASIC ALGEBRAIC STRUCTURES  
				Monoids  
				Definition and basic properties of monoids  
				ismnd  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   The predicate "is a monoid".  This is the defining theorem of a monoid
       by showing that a set is a monoid if and only if it is a set equipped
       with a closed, everywhere defined internal operation (so, a magma, see
       mndcl  ), whose operation is associative (so, a semigroup, see also
       mndass  ) and has a two-sided neutral element (see mndid  ).
       (Contributed by Mario Carneiro , 6-Jan-2015)   (Revised by AV , 1-Feb-2020) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						ismnd.b  
						⊢  𝐵   =  ( Base ‘ 𝐺  )  
					 
					
						 
						 
						ismnd.p  
						⊢   +    =  ( +g  ‘ 𝐺  )  
					 
				
					 
					Assertion 
					ismnd  
					⊢   ( 𝐺   ∈  Mnd  ↔  ( ∀ 𝑎   ∈  𝐵  ∀ 𝑏   ∈  𝐵  ( ( 𝑎   +   𝑏  )  ∈  𝐵   ∧  ∀ 𝑐   ∈  𝐵  ( ( 𝑎   +   𝑏  )  +   𝑐  )  =  ( 𝑎   +   ( 𝑏   +   𝑐  ) ) )  ∧  ∃ 𝑒   ∈  𝐵  ∀ 𝑎   ∈  𝐵  ( ( 𝑒   +   𝑎  )  =  𝑎   ∧  ( 𝑎   +   𝑒  )  =  𝑎  ) ) )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							ismnd.b  
							⊢  𝐵   =  ( Base ‘ 𝐺  )  
						 
						
							2  
							
								
							 
							ismnd.p  
							⊢   +    =  ( +g  ‘ 𝐺  )  
						 
						
							3  
							
								1  2 
							 
							ismnddef  
							⊢  ( 𝐺   ∈  Mnd  ↔  ( 𝐺   ∈  Smgrp  ∧  ∃ 𝑒   ∈  𝐵  ∀ 𝑎   ∈  𝐵  ( ( 𝑒   +   𝑎  )  =  𝑎   ∧  ( 𝑎   +   𝑒  )  =  𝑎  ) ) )  
						 
						
							4  
							
								
							 
							rexn0  
							⊢  ( ∃ 𝑒   ∈  𝐵  ∀ 𝑎   ∈  𝐵  ( ( 𝑒   +   𝑎  )  =  𝑎   ∧  ( 𝑎   +   𝑒  )  =  𝑎  )  →  𝐵   ≠  ∅ )  
						 
						
							5  
							
								
							 
							fvprc  
							⊢  ( ¬  𝐺   ∈  V  →  ( Base ‘ 𝐺  )  =  ∅ )  
						 
						
							6  
							
								1  5 
							 
							eqtrid  
							⊢  ( ¬  𝐺   ∈  V  →  𝐵   =  ∅ )  
						 
						
							7  
							
								6 
							 
							necon1ai  
							⊢  ( 𝐵   ≠  ∅  →  𝐺   ∈  V )  
						 
						
							8  
							
								1  2 
							 
							issgrpv  
							⊢  ( 𝐺   ∈  V  →  ( 𝐺   ∈  Smgrp  ↔  ∀ 𝑎   ∈  𝐵  ∀ 𝑏   ∈  𝐵  ( ( 𝑎   +   𝑏  )  ∈  𝐵   ∧  ∀ 𝑐   ∈  𝐵  ( ( 𝑎   +   𝑏  )  +   𝑐  )  =  ( 𝑎   +   ( 𝑏   +   𝑐  ) ) ) ) )  
						 
						
							9  
							
								4  7  8 
							 
							3syl  
							⊢  ( ∃ 𝑒   ∈  𝐵  ∀ 𝑎   ∈  𝐵  ( ( 𝑒   +   𝑎  )  =  𝑎   ∧  ( 𝑎   +   𝑒  )  =  𝑎  )  →  ( 𝐺   ∈  Smgrp  ↔  ∀ 𝑎   ∈  𝐵  ∀ 𝑏   ∈  𝐵  ( ( 𝑎   +   𝑏  )  ∈  𝐵   ∧  ∀ 𝑐   ∈  𝐵  ( ( 𝑎   +   𝑏  )  +   𝑐  )  =  ( 𝑎   +   ( 𝑏   +   𝑐  ) ) ) ) )  
						 
						
							10  
							
								9 
							 
							pm5.32ri  
							⊢  ( ( 𝐺   ∈  Smgrp  ∧  ∃ 𝑒   ∈  𝐵  ∀ 𝑎   ∈  𝐵  ( ( 𝑒   +   𝑎  )  =  𝑎   ∧  ( 𝑎   +   𝑒  )  =  𝑎  ) )  ↔  ( ∀ 𝑎   ∈  𝐵  ∀ 𝑏   ∈  𝐵  ( ( 𝑎   +   𝑏  )  ∈  𝐵   ∧  ∀ 𝑐   ∈  𝐵  ( ( 𝑎   +   𝑏  )  +   𝑐  )  =  ( 𝑎   +   ( 𝑏   +   𝑐  ) ) )  ∧  ∃ 𝑒   ∈  𝐵  ∀ 𝑎   ∈  𝐵  ( ( 𝑒   +   𝑎  )  =  𝑎   ∧  ( 𝑎   +   𝑒  )  =  𝑎  ) ) )  
						 
						
							11  
							
								3  10 
							 
							bitri  
							⊢  ( 𝐺   ∈  Mnd  ↔  ( ∀ 𝑎   ∈  𝐵  ∀ 𝑏   ∈  𝐵  ( ( 𝑎   +   𝑏  )  ∈  𝐵   ∧  ∀ 𝑐   ∈  𝐵  ( ( 𝑎   +   𝑏  )  +   𝑐  )  =  ( 𝑎   +   ( 𝑏   +   𝑐  ) ) )  ∧  ∃ 𝑒   ∈  𝐵  ∀ 𝑎   ∈  𝐵  ( ( 𝑒   +   𝑎  )  =  𝑎   ∧  ( 𝑎   +   𝑒  )  =  𝑎  ) ) )