Step |
Hyp |
Ref |
Expression |
1 |
|
issgrpn0.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
issgrpn0.o |
⊢ ⚬ = ( +g ‘ 𝑀 ) |
3 |
1 2
|
ismgm |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
4 |
3
|
anbi1d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) ) |
5 |
1 2
|
issgrp |
⊢ ( 𝑀 ∈ Smgrp ↔ ( 𝑀 ∈ Mgm ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
6 |
|
r19.26-2 |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) |
7 |
4 5 6
|
3bitr4g |
⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Smgrp ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ⚬ 𝑦 ) ⚬ 𝑧 ) = ( 𝑥 ⚬ ( 𝑦 ⚬ 𝑧 ) ) ) ) ) |