Database  
				BASIC ALGEBRAIC STRUCTURES  
				Monoids  
				Definition and basic properties of monoids  
				df-mnd  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Amonoid  is a semigroup, which has a two-sided neutral element.
       Definition 2 in BourbakiAlg1  p. 12.  In other words (according to the
       definition in Lang  p. 3), a monoid is a set equipped with an
       everywhere defined internal operation (see mndcl  ), whose operation is
       associative (see mndass  ) and has a two-sided neutral element (see
       mndid  ), see also ismnd  .  (Contributed by Mario Carneiro , 6-Jan-2015)   (Revised by AV , 1-Feb-2020) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
				
					 
					Assertion 
					df-mnd  
					|- Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }  
				 
			
		 
		 
			
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0  
							
								
							 
							cmnd  
							 |-  Mnd  
						 
						
							1  
							
								
							 
							vg  
							 |-  g  
						 
						
							2  
							
								
							 
							csgrp  
							 |-  Smgrp  
						 
						
							3  
							
								
							 
							cbs  
							 |-  Base  
						 
						
							4  
							
								1 
							 
							cv  
							 |-  g  
						 
						
							5  
							
								4  3 
							 
							cfv  
							 |-  ( Base ` g )  
						 
						
							6  
							
								
							 
							vb  
							 |-  b  
						 
						
							7  
							
								
							 
							cplusg  
							 |-  +g  
						 
						
							8  
							
								4  7 
							 
							cfv  
							 |-  ( +g ` g )  
						 
						
							9  
							
								
							 
							vp  
							 |-  p  
						 
						
							10  
							
								
							 
							ve  
							 |-  e  
						 
						
							11  
							
								6 
							 
							cv  
							 |-  b  
						 
						
							12  
							
								
							 
							vx  
							 |-  x  
						 
						
							13  
							
								10 
							 
							cv  
							 |-  e  
						 
						
							14  
							
								9 
							 
							cv  
							 |-  p  
						 
						
							15  
							
								12 
							 
							cv  
							 |-  x  
						 
						
							16  
							
								13  15  14 
							 
							co  
							 |-  ( e p x )  
						 
						
							17  
							
								16  15 
							 
							wceq  
							 |-  ( e p x ) = x  
						 
						
							18  
							
								15  13  14 
							 
							co  
							 |-  ( x p e )  
						 
						
							19  
							
								18  15 
							 
							wceq  
							 |-  ( x p e ) = x  
						 
						
							20  
							
								17  19 
							 
							wa  
							 |-  ( ( e p x ) = x /\ ( x p e ) = x )  
						 
						
							21  
							
								20  12  11 
							 
							wral  
							 |-  A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )  
						 
						
							22  
							
								21  10  11 
							 
							wrex  
							 |-  E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )  
						 
						
							23  
							
								22  9  8 
							 
							wsbc  
							 |-  [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )  
						 
						
							24  
							
								23  6  5 
							 
							wsbc  
							 |-  [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x )  
						 
						
							25  
							
								24  1  2 
							 
							crab  
							 |-  { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }  
						 
						
							26  
							
								0  25 
							 
							wceq  
							 |-  Mnd = { g e. Smgrp | [. ( Base ` g ) / b ]. [. ( +g ` g ) / p ]. E. e e. b A. x e. b ( ( e p x ) = x /\ ( x p e ) = x ) }