Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 7-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
gsumval.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
gsumval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
gsumval.o | ⊢ 𝑂 = { 𝑠 ∈ 𝐵 ∣ ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) } | ||
gsumval.w | ⊢ ( 𝜑 → 𝑊 = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) | ||
gsumval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
gsumval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
gsumval.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
Assertion | gsumval | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | gsumval.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
3 | gsumval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
4 | gsumval.o | ⊢ 𝑂 = { 𝑠 ∈ 𝐵 ∣ ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) } | |
5 | gsumval.w | ⊢ ( 𝜑 → 𝑊 = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) | |
6 | gsumval.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
7 | gsumval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
8 | gsumval.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
9 | 1 | fvexi | ⊢ 𝐵 ∈ V |
10 | 9 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
11 | fex2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ) → 𝐹 ∈ V ) | |
12 | 8 7 10 11 | syl3anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
13 | 8 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
14 | 1 2 3 4 5 6 12 13 | gsumvalx | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |