Metamath Proof Explorer


Theorem gsumval

Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses gsumval.b 𝐵 = ( Base ‘ 𝐺 )
gsumval.z 0 = ( 0g𝐺 )
gsumval.p + = ( +g𝐺 )
gsumval.o 𝑂 = { 𝑠𝐵 ∣ ∀ 𝑡𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) }
gsumval.w ( 𝜑𝑊 = ( 𝐹 “ ( V ∖ 𝑂 ) ) )
gsumval.g ( 𝜑𝐺𝑉 )
gsumval.a ( 𝜑𝐴𝑋 )
gsumval.f ( 𝜑𝐹 : 𝐴𝐵 )
Assertion gsumval ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto𝑊𝑥 = ( seq 1 ( + , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumval.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumval.z 0 = ( 0g𝐺 )
3 gsumval.p + = ( +g𝐺 )
4 gsumval.o 𝑂 = { 𝑠𝐵 ∣ ∀ 𝑡𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) }
5 gsumval.w ( 𝜑𝑊 = ( 𝐹 “ ( V ∖ 𝑂 ) ) )
6 gsumval.g ( 𝜑𝐺𝑉 )
7 gsumval.a ( 𝜑𝐴𝑋 )
8 gsumval.f ( 𝜑𝐹 : 𝐴𝐵 )
9 1 fvexi 𝐵 ∈ V
10 9 a1i ( 𝜑𝐵 ∈ V )
11 fex2 ( ( 𝐹 : 𝐴𝐵𝐴𝑋𝐵 ∈ V ) → 𝐹 ∈ V )
12 8 7 10 11 syl3anc ( 𝜑𝐹 ∈ V )
13 8 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
14 1 2 3 4 5 6 12 13 gsumvalx ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto𝑊𝑥 = ( seq 1 ( + , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) )