Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumval.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumval.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
gsumval.o |
⊢ 𝑂 = { 𝑠 ∈ 𝐵 ∣ ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) } |
5 |
|
gsumval.w |
⊢ ( 𝜑 → 𝑊 = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) |
6 |
|
gsumval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
7 |
|
gsumvalx.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) |
8 |
|
gsumvalx.a |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
9 |
|
df-gsum |
⊢ Σg = ( 𝑤 ∈ V , 𝑔 ∈ V ↦ ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → Σg = ( 𝑤 ∈ V , 𝑔 ∈ V ↦ ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) ) |
11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → 𝑤 = 𝐺 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐺 ) ) |
13 |
12 1
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
14 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( +g ‘ 𝑤 ) = ( +g ‘ 𝐺 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( +g ‘ 𝑤 ) = + ) |
16 |
15
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
17 |
16
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ↔ ( 𝑥 + 𝑦 ) = 𝑦 ) ) |
18 |
15
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ↔ ( 𝑦 + 𝑥 ) = 𝑦 ) ) |
20 |
17 19
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
21 |
13 20
|
raleqbidv |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
22 |
13 21
|
rabeqbidv |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
23 |
|
oveq2 |
⊢ ( 𝑡 = 𝑦 → ( 𝑠 + 𝑡 ) = ( 𝑠 + 𝑦 ) ) |
24 |
|
id |
⊢ ( 𝑡 = 𝑦 → 𝑡 = 𝑦 ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑡 = 𝑦 → ( ( 𝑠 + 𝑡 ) = 𝑡 ↔ ( 𝑠 + 𝑦 ) = 𝑦 ) ) |
26 |
|
oveq1 |
⊢ ( 𝑡 = 𝑦 → ( 𝑡 + 𝑠 ) = ( 𝑦 + 𝑠 ) ) |
27 |
26 24
|
eqeq12d |
⊢ ( 𝑡 = 𝑦 → ( ( 𝑡 + 𝑠 ) = 𝑡 ↔ ( 𝑦 + 𝑠 ) = 𝑦 ) ) |
28 |
25 27
|
anbi12d |
⊢ ( 𝑡 = 𝑦 → ( ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑠 ) = 𝑦 ) ) ) |
29 |
28
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑠 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑠 ) = 𝑦 ) ) |
30 |
|
oveq1 |
⊢ ( 𝑠 = 𝑥 → ( 𝑠 + 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑠 = 𝑥 → ( ( 𝑠 + 𝑦 ) = 𝑦 ↔ ( 𝑥 + 𝑦 ) = 𝑦 ) ) |
32 |
31
|
ovanraleqv |
⊢ ( 𝑠 = 𝑥 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑠 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑠 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
33 |
29 32
|
syl5bb |
⊢ ( 𝑠 = 𝑥 → ( ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) |
34 |
33
|
cbvrabv |
⊢ { 𝑠 ∈ 𝐵 ∣ ∀ 𝑡 ∈ 𝐵 ( ( 𝑠 + 𝑡 ) = 𝑡 ∧ ( 𝑡 + 𝑠 ) = 𝑡 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } |
35 |
4 34
|
eqtri |
⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } |
36 |
22 35
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } = 𝑂 ) |
37 |
36
|
csbeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = ⦋ 𝑂 / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) |
38 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
39 |
4 38
|
rabex2 |
⊢ 𝑂 ∈ V |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → 𝑂 ∈ V ) |
41 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑔 = 𝐹 ) |
42 |
41
|
rneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ran 𝑔 = ran 𝐹 ) |
43 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑜 = 𝑂 ) |
44 |
42 43
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ran 𝑔 ⊆ 𝑜 ↔ ran 𝐹 ⊆ 𝑂 ) ) |
45 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑤 = 𝐺 ) |
46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝐺 ) ) |
47 |
46 2
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 0g ‘ 𝑤 ) = 0 ) |
48 |
41
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → dom 𝑔 = dom 𝐹 ) |
49 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → dom 𝐹 = 𝐴 ) |
50 |
48 49
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → dom 𝑔 = 𝐴 ) |
51 |
50
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( dom 𝑔 ∈ ran ... ↔ 𝐴 ∈ ran ... ) ) |
52 |
50
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ↔ 𝐴 = ( 𝑚 ... 𝑛 ) ) ) |
53 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( +g ‘ 𝑤 ) = + ) |
54 |
53
|
seqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) = seq 𝑚 ( + , 𝑔 ) ) |
55 |
41
|
seqeq3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 𝑚 ( + , 𝑔 ) = seq 𝑚 ( + , 𝐹 ) ) |
56 |
54 55
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) = seq 𝑚 ( + , 𝐹 ) ) |
57 |
56
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) |
58 |
57
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
59 |
52 58
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ↔ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
60 |
59
|
rexbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
61 |
60
|
exbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
62 |
61
|
iotabidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) = ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
63 |
43
|
difeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( V ∖ 𝑜 ) = ( V ∖ 𝑂 ) ) |
64 |
63
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ◡ 𝐹 “ ( V ∖ 𝑜 ) ) = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) |
65 |
41
|
cnveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ◡ 𝑔 = ◡ 𝐹 ) |
66 |
65
|
imaeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) = ( ◡ 𝐹 “ ( V ∖ 𝑜 ) ) ) |
67 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑊 = ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ) |
68 |
64 66 67
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) = 𝑊 ) |
69 |
68
|
sbceq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ [ 𝑊 / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
70 |
|
cnvexg |
⊢ ( 𝐹 ∈ 𝑋 → ◡ 𝐹 ∈ V ) |
71 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∈ V ) |
72 |
7 70 71
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ 𝑂 ) ) ∈ V ) |
73 |
5 72
|
eqeltrd |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → 𝑊 ∈ V ) |
75 |
|
fveq2 |
⊢ ( 𝑦 = 𝑊 → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ 𝑊 ) ) |
76 |
75
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ 𝑊 ) ) |
77 |
76
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 1 ... ( ♯ ‘ 𝑦 ) ) = ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
78 |
77
|
f1oeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑦 ) ) |
79 |
|
f1oeq3 |
⊢ ( 𝑦 = 𝑊 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
80 |
79
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
81 |
78 80
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
82 |
53
|
seqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝑔 ∘ 𝑓 ) ) ) |
83 |
41
|
coeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( 𝑔 ∘ 𝑓 ) = ( 𝐹 ∘ 𝑓 ) ) |
84 |
83
|
seqeq3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 1 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ) |
85 |
82 84
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ) |
86 |
85
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ) |
87 |
86 76
|
fveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
88 |
87
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ↔ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
89 |
81 88
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) ∧ 𝑦 = 𝑊 ) → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
90 |
74 89
|
sbcied |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( [ 𝑊 / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
91 |
69 90
|
bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
92 |
91
|
exbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
93 |
92
|
iotabidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
94 |
51 62 93
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) = if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
95 |
44 47 94
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) ∧ 𝑜 = 𝑂 ) → if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
96 |
40 95
|
csbied |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ⦋ 𝑂 / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
97 |
37 96
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑔 = 𝐹 ) ) → ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑔 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑔 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑔 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑔 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 [ ( ◡ 𝑔 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑔 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |
98 |
6
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
99 |
7
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
100 |
2
|
fvexi |
⊢ 0 ∈ V |
101 |
|
iotaex |
⊢ ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ∈ V |
102 |
|
iotaex |
⊢ ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ∈ V |
103 |
101 102
|
ifex |
⊢ if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ∈ V |
104 |
100 103
|
ifex |
⊢ if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ∈ V |
105 |
104
|
a1i |
⊢ ( 𝜑 → if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ∈ V ) |
106 |
10 97 98 99 105
|
ovmpod |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ 𝑂 , 0 , if ( 𝐴 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) |