Metamath Proof Explorer


Theorem sbcied

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses sbcied.1 ( 𝜑𝐴𝑉 )
sbcied.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion sbcied ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcied.1 ( 𝜑𝐴𝑉 )
2 sbcied.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 df-sbc ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ { 𝑥𝜓 } )
4 1 2 elabd3 ( 𝜑 → ( 𝐴 ∈ { 𝑥𝜓 } ↔ 𝜒 ) )
5 3 4 bitrid ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )