Metamath Proof Explorer


Theorem sbcied

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses sbcied.1 φ A V
sbcied.2 φ x = A ψ χ
Assertion sbcied φ [˙A / x]˙ ψ χ

Proof

Step Hyp Ref Expression
1 sbcied.1 φ A V
2 sbcied.2 φ x = A ψ χ
3 df-sbc [˙A / x]˙ ψ A x | ψ
4 1 2 elabd3 φ A x | ψ χ
5 3 4 bitrid φ [˙A / x]˙ ψ χ