Metamath Proof Explorer


Theorem elabd3

Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab . (Contributed by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses elabd3.ex φAV
elabd3.is φx=Aψχ
Assertion elabd3 φAx|ψχ

Proof

Step Hyp Ref Expression
1 elabd3.ex φAV
2 elabd3.is φx=Aψχ
3 eqidd φx|ψ=x|ψ
4 1 3 2 elabd2 φAx|ψχ