Metamath Proof Explorer


Theorem elabgt

Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg .) (Contributed by NM, 7-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Assertion elabgt A B x x = A φ ψ A x | φ ψ

Proof

Step Hyp Ref Expression
1 elab6g A B A x | φ x x = A φ
2 1 adantr A B x x = A φ ψ A x | φ x x = A φ
3 elisset A B x x = A
4 biimp φ ψ φ ψ
5 4 imim3i x = A φ ψ x = A φ x = A ψ
6 5 al2imi x x = A φ ψ x x = A φ x x = A ψ
7 19.23v x x = A ψ x x = A ψ
8 6 7 syl6ib x x = A φ ψ x x = A φ x x = A ψ
9 8 com3r x x = A x x = A φ ψ x x = A φ ψ
10 biimpr φ ψ ψ φ
11 10 imim2i x = A φ ψ x = A ψ φ
12 11 alimi x x = A φ ψ x x = A ψ φ
13 bi2.04 x = A ψ φ ψ x = A φ
14 13 albii x x = A ψ φ x ψ x = A φ
15 19.21v x ψ x = A φ ψ x x = A φ
16 14 15 sylbb x x = A ψ φ ψ x x = A φ
17 12 16 syl x x = A φ ψ ψ x x = A φ
18 17 a1i x x = A x x = A φ ψ ψ x x = A φ
19 9 18 impbidd x x = A x x = A φ ψ x x = A φ ψ
20 3 19 syl A B x x = A φ ψ x x = A φ ψ
21 20 imp A B x x = A φ ψ x x = A φ ψ
22 2 21 bitrd A B x x = A φ ψ A x | φ ψ