Metamath Proof Explorer


Definition df-prds

Description: Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Thierry Arnoux, 15-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Assertion df-prds 𝑠=sV,rVxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprds class𝑠
1 vs setvars
2 cvv classV
3 vr setvarr
4 vx setvarx
5 3 cv setvarr
6 5 cdm classdomr
7 cbs classBase
8 4 cv setvarx
9 8 5 cfv classrx
10 9 7 cfv classBaserx
11 4 6 10 cixp classxdomrBaserx
12 vv setvarv
13 vf setvarf
14 12 cv setvarv
15 vg setvarg
16 13 cv setvarf
17 8 16 cfv classfx
18 chom classHom
19 9 18 cfv classHomrx
20 15 cv setvarg
21 8 20 cfv classgx
22 17 21 19 co classfxHomrxgx
23 4 6 22 cixp classxdomrfxHomrxgx
24 13 15 14 14 23 cmpo classfv,gvxdomrfxHomrxgx
25 vh setvarh
26 cnx classndx
27 26 7 cfv classBasendx
28 27 14 cop classBasendxv
29 cplusg class+𝑔
30 26 29 cfv class+ndx
31 9 29 cfv class+rx
32 17 21 31 co classfx+rxgx
33 4 6 32 cmpt classxdomrfx+rxgx
34 13 15 14 14 33 cmpo classfv,gvxdomrfx+rxgx
35 30 34 cop class+ndxfv,gvxdomrfx+rxgx
36 cmulr class𝑟
37 26 36 cfv classndx
38 9 36 cfv classrx
39 17 21 38 co classfxrxgx
40 4 6 39 cmpt classxdomrfxrxgx
41 13 15 14 14 40 cmpo classfv,gvxdomrfxrxgx
42 37 41 cop classndxfv,gvxdomrfxrxgx
43 28 35 42 ctp classBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgx
44 csca classScalar
45 26 44 cfv classScalarndx
46 1 cv setvars
47 45 46 cop classScalarndxs
48 cvsca class𝑠
49 26 48 cfv classndx
50 46 7 cfv classBases
51 9 48 cfv classrx
52 16 21 51 co classfrxgx
53 4 6 52 cmpt classxdomrfrxgx
54 13 15 50 14 53 cmpo classfBases,gvxdomrfrxgx
55 49 54 cop classndxfBases,gvxdomrfrxgx
56 cip class𝑖
57 26 56 cfv class𝑖ndx
58 cgsu classΣ𝑔
59 9 56 cfv class𝑖rx
60 17 21 59 co classfx𝑖rxgx
61 4 6 60 cmpt classxdomrfx𝑖rxgx
62 46 61 58 co classsxdomrfx𝑖rxgx
63 13 15 14 14 62 cmpo classfv,gvsxdomrfx𝑖rxgx
64 57 63 cop class𝑖ndxfv,gvsxdomrfx𝑖rxgx
65 47 55 64 ctp classScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgx
66 43 65 cun classBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgx
67 cts classTopSet
68 26 67 cfv classTopSetndx
69 cpt class𝑡
70 ctopn classTopOpen
71 70 5 ccom classTopOpenr
72 71 69 cfv class𝑡TopOpenr
73 68 72 cop classTopSetndx𝑡TopOpenr
74 cple classle
75 26 74 cfv classndx
76 16 20 cpr classfg
77 76 14 wss wfffgv
78 9 74 cfv classrx
79 17 21 78 wbr wfffxrxgx
80 79 4 6 wral wffxdomrfxrxgx
81 77 80 wa wfffgvxdomrfxrxgx
82 81 13 15 copab classfg|fgvxdomrfxrxgx
83 75 82 cop classndxfg|fgvxdomrfxrxgx
84 cds classdist
85 26 84 cfv classdistndx
86 9 84 cfv classdistrx
87 17 21 86 co classfxdistrxgx
88 4 6 87 cmpt classxdomrfxdistrxgx
89 88 crn classranxdomrfxdistrxgx
90 cc0 class0
91 90 csn class0
92 89 91 cun classranxdomrfxdistrxgx0
93 cxr class*
94 clt class<
95 92 93 94 csup classsupranxdomrfxdistrxgx0*<
96 13 15 14 14 95 cmpo classfv,gvsupranxdomrfxdistrxgx0*<
97 85 96 cop classdistndxfv,gvsupranxdomrfxdistrxgx0*<
98 73 83 97 ctp classTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<
99 26 18 cfv classHomndx
100 25 cv setvarh
101 99 100 cop classHomndxh
102 cco classcomp
103 26 102 cfv classcompndx
104 va setvara
105 14 14 cxp classv×v
106 vc setvarc
107 vd setvard
108 c2nd class2nd
109 104 cv setvara
110 109 108 cfv class2nda
111 106 cv setvarc
112 110 111 100 co class2ndahc
113 ve setvare
114 109 100 cfv classha
115 107 cv setvard
116 8 115 cfv classdx
117 c1st class1st
118 109 117 cfv class1sta
119 8 118 cfv class1stax
120 8 110 cfv class2ndax
121 119 120 cop class1stax2ndax
122 9 102 cfv classcomprx
123 8 111 cfv classcx
124 121 123 122 co class1stax2ndaxcomprxcx
125 113 cv setvare
126 8 125 cfv classex
127 116 126 124 co classdx1stax2ndaxcomprxcxex
128 4 6 127 cmpt classxdomrdx1stax2ndaxcomprxcxex
129 107 113 112 114 128 cmpo classd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
130 104 106 105 14 129 cmpo classav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
131 103 130 cop classcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
132 101 131 cpr classHomndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
133 98 132 cun classTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
134 66 133 cun classBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
135 25 24 134 csb classfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
136 12 11 135 csb classxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
137 1 3 2 2 136 cmpo classsV,rVxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex
138 0 137 wceq wff𝑠=sV,rVxdomrBaserx/vfv,gvxdomrfxHomrxgx/hBasendxv+ndxfv,gvxdomrfx+rxgxndxfv,gvxdomrfxrxgxScalarndxsndxfBases,gvxdomrfrxgx𝑖ndxfv,gvsxdomrfx𝑖rxgxTopSetndx𝑡TopOpenrndxfg|fgvxdomrfxrxgxdistndxfv,gvsupranxdomrfxdistrxgx0*<Homndxhcompndxav×v,cvd2ndahc,ehaxdomrdx1stax2ndaxcomprxcxex