Metamath Proof Explorer


Definition df-sup

Description: Define the supremum of class A . It is meaningful when R is a relation that strictly orders B and when the supremum exists. For example, R could be 'less than', B could be the set of real numbers, and A could be the set of all positive reals whose square is less than 2; in this case the supremum is defined as the square root of 2 per sqrtval . See dfsup2 for alternate definition not requiring dummy variables. (Contributed by NM, 22-May-1999)

Ref Expression
Assertion df-sup supABR=xB|yA¬xRyyByRxzAyRz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cB classB
2 cR classR
3 0 1 2 csup classsupABR
4 vx setvarx
5 vy setvary
6 4 cv setvarx
7 5 cv setvary
8 6 7 2 wbr wffxRy
9 8 wn wff¬xRy
10 9 5 0 wral wffyA¬xRy
11 7 6 2 wbr wffyRx
12 vz setvarz
13 12 cv setvarz
14 7 13 2 wbr wffyRz
15 14 12 0 wrex wffzAyRz
16 11 15 wi wffyRxzAyRz
17 16 5 1 wral wffyByRxzAyRz
18 10 17 wa wffyA¬xRyyByRxzAyRz
19 18 4 1 crab classxB|yA¬xRyyByRxzAyRz
20 19 cuni classxB|yA¬xRyyByRxzAyRz
21 3 20 wceq wffsupABR=xB|yA¬xRyyByRxzAyRz