Metamath Proof Explorer


Theorem dfsup2

Description: Quantifier-free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013)

Ref Expression
Assertion dfsup2 supBAR=AR-1BRAR-1B

Proof

Step Hyp Ref Expression
1 df-sup supBAR=xA|yB¬xRyyAyRxzByRz
2 dfrab3 xA|yB¬xRyyAyRxzByRz=Ax|yB¬xRyyAyRxzByRz
3 eqabcb x|yB¬xRyyAyRxzByRz=VR-1BRAR-1BxyB¬xRyyAyRxzByRzxVR-1BRAR-1B
4 vex xV
5 eldif xVR-1BRAR-1BxV¬xR-1BRAR-1B
6 4 5 mpbiran xVR-1BRAR-1B¬xR-1BRAR-1B
7 4 elima xR-1ByByR-1x
8 dfrex2 yByR-1x¬yB¬yR-1x
9 7 8 bitri xR-1B¬yB¬yR-1x
10 4 elima xRAR-1ByAR-1ByRx
11 dfrex2 yAR-1ByRx¬yAR-1B¬yRx
12 10 11 bitri xRAR-1B¬yAR-1B¬yRx
13 9 12 orbi12i xR-1BxRAR-1B¬yB¬yR-1x¬yAR-1B¬yRx
14 elun xR-1BRAR-1BxR-1BxRAR-1B
15 ianor ¬yB¬yR-1xyAR-1B¬yRx¬yB¬yR-1x¬yAR-1B¬yRx
16 13 14 15 3bitr4i xR-1BRAR-1B¬yB¬yR-1xyAR-1B¬yRx
17 16 con2bii yB¬yR-1xyAR-1B¬yRx¬xR-1BRAR-1B
18 vex yV
19 18 4 brcnv yR-1xxRy
20 19 notbii ¬yR-1x¬xRy
21 20 ralbii yB¬yR-1xyB¬xRy
22 impexp yA¬yR-1B¬yRxyA¬yR-1B¬yRx
23 eldif yAR-1ByA¬yR-1B
24 23 imbi1i yAR-1B¬yRxyA¬yR-1B¬yRx
25 18 elima yR-1BzBzR-1y
26 vex zV
27 26 18 brcnv zR-1yyRz
28 27 rexbii zBzR-1yzByRz
29 25 28 bitri yR-1BzByRz
30 29 imbi2i yRxyR-1ByRxzByRz
31 con34b yRxyR-1B¬yR-1B¬yRx
32 30 31 bitr3i yRxzByRz¬yR-1B¬yRx
33 32 imbi2i yAyRxzByRzyA¬yR-1B¬yRx
34 22 24 33 3bitr4i yAR-1B¬yRxyAyRxzByRz
35 34 ralbii2 yAR-1B¬yRxyAyRxzByRz
36 21 35 anbi12i yB¬yR-1xyAR-1B¬yRxyB¬xRyyAyRxzByRz
37 6 17 36 3bitr2ri yB¬xRyyAyRxzByRzxVR-1BRAR-1B
38 3 37 mpgbir x|yB¬xRyyAyRxzByRz=VR-1BRAR-1B
39 38 ineq2i Ax|yB¬xRyyAyRxzByRz=AVR-1BRAR-1B
40 invdif AVR-1BRAR-1B=AR-1BRAR-1B
41 39 40 eqtri Ax|yB¬xRyyAyRxzByRz=AR-1BRAR-1B
42 2 41 eqtri xA|yB¬xRyyAyRxzByRz=AR-1BRAR-1B
43 42 unieqi xA|yB¬xRyyAyRxzByRz=AR-1BRAR-1B
44 1 43 eqtri supBAR=AR-1BRAR-1B