Metamath Proof Explorer


Theorem ralbii2

Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005)

Ref Expression
Hypothesis ralbii2.1 xAφxBψ
Assertion ralbii2 xAφxBψ

Proof

Step Hyp Ref Expression
1 ralbii2.1 xAφxBψ
2 1 albii xxAφxxBψ
3 df-ral xAφxxAφ
4 df-ral xBψxxBψ
5 2 3 4 3bitr4i xAφxBψ