Metamath Proof Explorer


Theorem rexbii2

Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004)

Ref Expression
Hypothesis rexbii2.1 xAφxBψ
Assertion rexbii2 xAφxBψ

Proof

Step Hyp Ref Expression
1 rexbii2.1 xAφxBψ
2 1 exbii xxAφxxBψ
3 df-rex xAφxxAφ
4 df-rex xBψxxBψ
5 2 3 4 3bitr4i xAφxBψ