Metamath Proof Explorer


Theorem ralbiia

Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000)

Ref Expression
Hypothesis ralbiia.1 xAφψ
Assertion ralbiia xAφxAψ

Proof

Step Hyp Ref Expression
1 ralbiia.1 xAφψ
2 1 pm5.74i xAφxAψ
3 2 ralbii2 xAφxAψ